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Remark. In homework 1 problem 1.2 that is to show
p

12 is irrational, many falsely asserted that
12 | m2 implies 12 | m. While for any p prime p | m2 implies p | m, this is not true in general for
composite number (take m = 6 in this case). What is true is that for any prime p, p | ab =⇒ p | a
or p | b. This is called Euclid’s lemma and can be taken as the defining property of prime numbers.

2.2

A complex number z is said to be algebraic if there are integers a0, · · · , an , not all zero such that

a0zn +a1zn−1 +·· ·+an−1z +an = 0.

Prove the set of algebraic numbers is countable.

Proof. Let AN be the set of algebraic numbers satisfying an equation as above with n + |a0| +
|a1|+· · ·+|an | = N . AN is finite because there are finitely many equations satisfying this condition
and each equation has finitely many solution (fundamental theorem of algebra). So the set of
all algebraic numbers,

⋃∞
N=2 AN , is at most countable. Since all integers are algebraic, the set of

algebraic numbers is countable. ■

2.4

Is the set of irrational real numbers countable?

Proof. If R\Qwere countable, then R=Q∪ (R\Q) would be countable, a contradiction. ■
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2.7

Finite union of closures is closure of finite union. Not true in general for infinite union.

Proof. (a) A1 ⊂ A1 ∪ A2 so A1 ⊂ A1 ∪ A2 (Verify!). By symmetry A2 ⊂ A1 ∪ A2. Hence A1 ∪ A2 ⊂
A1 ∪ A2. Conversely, A1 ∪ A2 ⊂ A1 ∪ A2, which is a closed set being union of two closed sets.
So A1 ∪ A2 ⊂ A1 ∪ A2 (recall the closure of a set is the smallest closed set containing that set
so any closed set containing the set contains its closure) . The general case follows from
induction.

(b) Note that Ai ⊂⋃∞
i=1 Ai for each i so

⋃∞
i=1 Ai ⊂⋃∞

i=1 Ai . The converse is false, as can be shown
by taking Ai = {qi } to be the i th rational number in some enumeration of Q = {q1, q2, · · · }.⋃∞

i=1 Ai = ⋃∞
i=1{qi } = Q because points are closed in a metric space (Verify). On the other

hand,
⋃∞

i=1 Ai =Q=R.
■

2.9

Let Br (x) denote the ball of radius r centered at x, same as neighborhood in Rudin.

(a) E◦ is open.

(b) E is open iff E◦ = E .

(c) If G ⊂ E and G is open, G ⊂ E◦, i.e. E◦ is the largest open set contained in E .

(d) (E◦)c = E c .

(e) Do E and E always have the same interior?

(f) Do E and E◦ always have the same closure?

Proof. (a) Let x ∈ E◦. Then there exists r > 0 s.t. Br (x) ⊂ E . For each y ∈ Br (x), y ∈ Br−d(x,y)(y) ⊂
Br (x) so Br (x) ⊂ E◦.

(b) If E◦ = E , E is open by (a). If E is open, then E◦ = E by definition (E is open if every point in
E is an interior point).

(c) G =G◦ ⊂ E◦. (Verify if G ⊂ E then G◦ ⊂ E◦)

(d)

(E◦)c =
( ⋃

G⊂E
G open

G
)c = ⋂

E c⊂Gc

Gc closed

Gc = E c .

(e) Let E =Q. E◦ =; whereas (E)◦ =R◦ =R. (Holes have been filled)

(f) Let E =Q. E =Rwhereas E◦ =;=;.
■
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2.10

Proof. To show triangle inequality d(p, q) ≤ d(p, s)+d(s, q), note that the maximum of the left
hand side is 1, and is attained when p 6= q . Then d(p, s) and d(q, s) can be be 0 at the same time.
d is called a discrete metric on X and (X ,d) is called discrete metric space or a space of isolated
points.
Observe that B1/2(x) = {x} so every point is open. Every subset is a union of points so all subsets
are open and hence all are closed.

⋃
x∈K {x} is an open over of K so if K were compact, K has to

be finite to have a finite subcover. Conversely, every finite subset of X is compact. (Verify). ■

2.11

Proof. (a) d(0,1)+d(1,2) < d(0,2).

(b) It is a metric. Square
√|x − y | ≤p|x − z|+√|y − z| to verify the triangle inequality.

(c) d(1,−1) = 0.

(d) d(1, 1
2 ) = 0 and the metric is also nonsymmetric.

(e) It is a metric. Let f (t ) = t
1+t . Note that f is an increasing function of t on [0,∞). Then

f (d(x, y)) ≤ f (d(x, z)+d(y, z)) = d(x, z)+d(y, z)

1+d(x, z)+d(y, z)

= d(x, z)

1+d(x, z)+d(y, z)
+ d(y, z)

1+d(x, z)+d(y, z)

≤ f (d(x, z))+ f (d(y, z)).

Note that we prove a more general fact: if d is a metric on X , then so is ρ = d
1+d .

■

2.22

Rk is separable.

Proof. We claim thatQk is a countable base forRk . It suffices to showQk =Rk . Let x = (x1, · · · , xk )
∈Rk and let Br (x) be an open ball that contains x. SinceQ is dense in R, pick a rational number
qi ∈ (xi − rp

k
, xi + rp

k
) so that |xi −qi | < rp

k
and let q = (q1, · · · , qk ) ∈Qk . Then

|x−q| =
√√√√ k∑

i=1
|xi −qi |2 <

√√√√ k∑
i=1

r 2

k
= r.

■
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2.23

Every separable metric space has a countable base.

Proof. Let (X ,ρ) be a metric space and let D denote the countable dense subset. Let B =
{Br (d)}r∈Q+,d∈D be the collection of open balls with rational radius centered in some element
in D . The collection D is countable. Let x ∈ X and G be an open subset of X containing x.
So there exists s > 0 such that x ∈ Bs(x) ⊂ G . Since D is dense in X , there exists d ∈ D such
that ρ(d , x) < s

2 . Since Q is dense in R, there exists r ∈ Q such that ρ(d , x) < r < s
2 . Check that

x ∈ Br (d) ⊂ Br (x) ⊂G . Hence B is a base. ■
Remark. Having a countable base is called second countable in point-set topology. This exercise
shows that every separable metric space is second countable. In fact you can also show second
countable implies separability so in metric spaces the two conditions are equivalent.
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