Solution to Homework 4

Haiyu Huang

November 1, 2018

Disclaimer: The solution may contain errors or typos so use at your own risk.

2.12

Problem. Let $K \subset \mathbb{R}$ consist of 0 and the numbers 1/n, for $n = 1, 2, 3, \dots$. Prove that K is compact directly from the definition.

Proof. Let $\{U_{\alpha}\}_{\alpha \in A}$ be an open cover of K. Let $\alpha_0 \in A$ be the index such that $0 \in U_{\alpha_0}$. Since U_{α_0} is open, there exists r > 0 such that $(-r, r) \in U_{\alpha_0}$. This implies for all $n > \frac{1}{r}$, $\frac{1}{n} \in U_{\alpha_0}$. Then choose an open set U_{α_n} in the open cover for each of the $\frac{1}{n} \in K$ where $n \leq \frac{1}{r}$. Adjoining U_{α_0} gives a finite subcover of K.

2.16

Problem. Regards \mathbb{Q} as a metric space with d(p,q) = |p-q|. Let *E* be the set of all $p \in \mathbb{Q}$ such that $2 < p^2 < 3$. Show that *E* is closed and bounded in \mathbb{Q} , but that *E* is not compact. Is *E* open in \mathbb{Q} ?

Proof. Notice that \mathbb{R} is a metric space with distance function d(x, y) = |x - y|. $\mathbb{Q} \subset \mathbb{R}$ is a metric space in its own right by restricting d to $\mathbb{Q} \times \mathbb{Q}$. The restricted distance function is called the metric induced on \mathbb{Q} by d and (\mathbb{Q}, d) is a metric subspace of (\mathbb{R}, d) . By theorem 2.30, $E \subset \mathbb{Q}$ is open in \mathbb{Q} iff $E = \mathbb{Q} \cap U$ for some open subset of U of \mathbb{R} . Similarly, $E \subset \mathbb{Q}$ is closed in \mathbb{Q} iff $E = \mathbb{Q} \cap V$ for some closed subset of V of \mathbb{R} (Verify!). Now E is closed because E is the intersection of a closed set of \mathbb{R} and \mathbb{Q} :

$$E = \mathbb{Q} \cap \{ p \in \mathbb{R} \mid 2 < p^2 < 3 \} = \mathbb{Q} \cap \{ p \in \mathbb{R} \mid 2 \le p^2 \le 3 \} = \mathbb{Q} \cap \left([-\sqrt{3}, -\sqrt{2}] \cup [\sqrt{2}, \sqrt{3}] \right),$$

where $[-\sqrt{3}, -\sqrt{2}] \cup [\sqrt{2}, \sqrt{3}]$ is a closed in \mathbb{R} and the second equality follows from the fact that $\sqrt{2}$ and $\sqrt{3}$ are irrational. *E* is open because

$$E = \mathbb{Q} \cap \{ p \in \mathbb{R} \mid 2 < p^2 < 3 \} = \mathbb{Q} \cap \left((-\sqrt{3}, -\sqrt{2}) \cup (\sqrt{2}, \sqrt{3}) \right)$$

By theorem 2.33, *E* is compact in \mathbb{Q} iff *E* is compact in \mathbb{R} . However *E* is not closed in \mathbb{R} ($\overline{E} =$?) and hence not compact by Heine-Borel. $E \subset [-2, 2]$ is obviously bounded.

2.18

Problem (Optional). *Is there a nonempty perfect set in* \mathbb{R} *which contains no rational number?*

Proof. Let E_0 be a interval with your favorite irrational endpoints, say [-e, e]. Let $\{q_1, q_2, \cdots\}$ be the enumeration of rational numbers in E_0 . We perform similar construction as in the construction of Cantor set, except in stage k we exclude the kth rational number q_k using a subinterval with irrational endpoints. Now assume inductively that E_n has been constructed such that E_n is a pairwise disjoint union of closed interval with irrational endpoints, each of length at most $3^{-n} \cdot 2e$ and E_n does not contain q_k for $k \le n$. Construct F_{n+1} by removing the middle third of each of the intervals in E_n . If $q_{n+1} \notin F_{n+1}$, then let $E_{n+1} = F_{n+1}$; otherwise q_{n+1} is contained in some interval [a, b], where $a, b \in \mathbb{R} \setminus \mathbb{Q}$. Let $\epsilon > 0$ be a irrational number less than $\min(q_{n+1} - a, b - q_{n+1})$ (Why?) and let $E_{n+1} = F_{n+1} \setminus (q_{n+1} - \epsilon, q_{n+1} + \epsilon)$ so that $q_{n+1} \notin E_{n+1}$. E_n is closed and bounded so E_n form a nested sequence of nonempty compact sets. Hence $P = \bigcap_{n=1}^{\infty} E_n$ is a nonempty compact set. It contains no rational number by construction. Let $x \in P$, then for each n there exists a unique interval $I_n = [a_n, b_n]$ among the disjoint intervals whose union is E_n such that $x \in I_n$. Let $y_n = a_n$ if $x \neq a_n$ and $y_n = b_n$ if $x = a_n$ so that $y_n \in P$ and $|y_n - x| < 3^{-n} \cdot 2e$. Hence $x \in P'$ and P is perfect.

2.19

Problem. Prove that every connected metric space with at least two points is uncountable.

Proof. Let *x*, *y* be two distinct points in *X*. For every $r \in (0, d(x, y))$, there exists $z \in X$ such that d(x, z) = r, otherwise $B_r(x)$ and $\{p \in X \mid d(x, p) > r\}$ are nonempty separated sets whose union is *X*, contradicting the hypothesis that *X* is connected. Hence we've constructed a subset of *X* with a bijection with [0, d(x, y)], which is uncountable. So *X* is uncountable.

2.20

Problem. Are closures and interiors of connected sets always connected?

Proof. Let *A* be connected subset of *X*. We claim if $A \subseteq B \subseteq \overline{A}$ then *B* is connected. Suppose on the contrary $B = E \cup F$, where *E* and *F* are nonempty separated sets. To arrive at a contradiction, we would like $\tilde{E} = A \cap E$ and $\tilde{F} = A \cap F$ to be nonempty separated sets whose union is *A*. It is obviously \tilde{E} and \tilde{F} are separated and $\tilde{E} \cup \tilde{F} = A$. It remains to check \tilde{E} and \tilde{F} are nonempty. Suppose $\tilde{F} = \emptyset$ and so $A \subset E$. Then since $F \neq \emptyset$, *F* contains a limit point of *A* and so contains a limit point of *E*, contradicting $\overline{E} \cap F = \emptyset$ because *E* and *F* are separated. Therefore, \tilde{E} and \tilde{F} are nonempty separated sets whose union is *A*, implying *A* is not connected, a contradiction. The interior of a connected set may fail to be connected. Take, for example, the union of two closed disks of radius 1 center at (1,0) and (-1,0) in \mathbb{R}^2 , the interior of which are disjoint open disks.

2.21

Problem. Every convex subset of \mathbb{R}^k is connected.

Proof. Let $E \subset \mathbb{R}^k$ be a convex set. Suppose on the contrary that there exists nonempty subsets $A, B \subset E$ such that $A \cup B = E$ and A, B are separated. Let $a \in A, b \in B$ and define p(t) = (1-t)a+tb for $t \in \mathbb{R}$. Let $A_0 = p^{-1}(A)$ and $B_0 = p^{-1}(B)$. Assume towards contradiction that $\overline{A_0} \cap B_0 \neq \emptyset$. Then there exists $s \in \mathbb{R}$ such that $p(s) \in B$ and for every r > 0, there exists $t \in \mathbb{R}$ such that |s - t| < r and $p(t) \in A$. Now

$$|p(s), p(t)| = |s - t||a - b| \le (|a| + |b|)|s - t| < (|a| + |b|)r.$$

Since *r* is arbitrary and $p(t) \in A$, $p(s) \in \overline{A} \cap B$, contradicting that *A* and *B* are separated. Hence A_0 and B_0 are separated. Since *E* is convex, $p(t) \in E = A \cup B$ for all $t \in [0,1]$. This implies $[0,1] \subset A_0 \cup B_0$. So $[0,1] = U \cup V$, where $U = A_0 \cap [0,1]$ and $V = B_0 \cap [0,1]$. Note that U,V are nonempty separated set, implying that [0,1] is not connected, a contradiction. Therefore, every convex subset of \mathbb{R}^k is connected.

2.24

Problem. Let X be a metric space in which every infinite subset has a limit point. Prove that X is separable.

Proof. For each $\delta > 0$, we construct the following set: pick $x_1 \in X$. Having chosen $x_1, \dots, x_j \in X$, choose $x_{j+1} \in X$, if possible, so that $d(x_i, x_{j+1}) \ge \delta$ for $i = 1, \dots, j$. This process must stop after a finite number of steps, otherwise for any $x \in X$, $B_{\frac{\delta}{2}}(x)$ contains at most one point of the infinite set, and hence no point could be a limit point of this set, contradicting the hypothesis. So it follows that for each $\delta = \frac{1}{n} > 0$, X is covered by open balls of radius $\frac{1}{n}$ centered at the finitely many points we constructed $x_{n1}, x_{n2}, \dots, x_{nm_n}$ for some m_n depending on n, i.e. $X = \bigcup_{j=1}^{m_n} B_{\frac{1}{n}}(x_{nj})$. Consider $D = \{x_{nj}, 1 \le j \le m_n, n = 1, 2, \dots\}$. D is countable since D is a countable union of finite sets. Let $x \in X$ and r > 0. Then there exists $n \in \mathbb{N}$ such that $r > \frac{1}{n}$ by Archimedean property of \mathbb{R} . $X = \bigcup_{j=1}^{m_n} B_{\frac{1}{n}}(x_{nj})$ implies $x \in B_{\frac{1}{n}}(x_{nj})$ for some $1 \le j \le m_n$. So $x_{nj} \in B_r(x)$. Therefore D is a countable dense subset of X and X is separable.

2.25

Problem. *Prove that every compact metric space K has a countable base, and that K is therefore separable.*

Proof. Let $n \in \mathbb{N}$. $\bigcup_{x \in X} B_{\frac{1}{n}}(x)$ is an open cover of K and since K is compact, $K \subset \bigcup_{j=1}^{m_n} B_{\frac{1}{n}}(x_{nj})$. Similar to the previous problem, $D = \{x_{nj}, 1 \le j \le m_n, n = 1, 2, \cdots\}$ is a countable dense subset of X and $\mathcal{B} = \{B_{\frac{1}{n}}(x_{nj}), 1 \le j \le m_n, n = 1, 2, \cdots\}$ is a countable base for K.

2.29

Problem. Prove that every open set in \mathbb{R} is the union of an at most countable collection of disjoint segments.

Proof. If *U* is open, for each $x \in U$ we construct the largest interval containing *x*: consider the collection \mathcal{I}_x of all open intervals *I* such that $x \in I \subset U$. It is easy to check that the union of any family of open intervals containing a point is common is again an open interval (Verify!), and hence $J_x = \bigcup_{I \in \mathcal{I}_x} I$ is an open interval: it is the largest element of \mathcal{I}_x . If $x, y \in U$ then either $J_x = J_y$ or $J_x \cap J_y = \emptyset$, for otherwise $J_x \cup J_y$ would be a larger open interval than J_x in \mathcal{I}_x . Let $\mathcal{J} = \{J_x : x \in U\}$, where the members of \mathcal{J} are disjoint, and $U = \bigcup_{I \in \mathcal{J}} J$. For each $J \in \mathcal{J}$, pick a rational number $f(J) \in J$. This map $f : \mathcal{J} \to \mathbb{Q}$ thus defined is an injection, for if $J \neq J'$ then $J \cap J' = \emptyset$; therefore \mathcal{J} is countable.