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Disclaimer: The solution may contain errors or typos so use at your own risk.

2.12

Problem. Let K ⊂R consist of 0 and the numbers 1/n, for n = 1,2,3, · · · . Prove that K is compact
directly from the definition.

Proof. Let {Uα}α∈A be an open cover of K . Letα0 ∈ A be the index such that 0 ∈Uα0 . Since Uα0 is
open, there exists r > 0 such that (−r,r ) ∈Uα0 . This implies for all n > 1

r , 1
n ∈Uα0 . Then choose

an open set Uαn in the open cover for each of the 1
n ∈ K where n ≤ 1

r . Adjoining Uα0 gives a finite
subcover of K . ■

2.16

Problem. RegardsQ as a metric space with d(p, q) = |p−q |. Let E be the set of all p ∈Q such that
2 < p2 < 3. Show that E is closed and bounded inQ, but that E is not compact. Is E open inQ?

Proof. Notice that R is a metric space with distance function d(x, y) = |x − y |. Q⊂ R is a metric
space in its own right by restricting d to Q×Q. The restricted distance function is called the
metric induced on Q by d and (Q,d) is a metric subspace of (R,d). By theorem 2.30, E ⊂ Q is
open inQ iff E =Q∩U for some open subset of U ofR. Similarly, E ⊂Q is closed inQ iff E =Q∩V
for some closed subset of V of R (Verify!). Now E is closed because E is the intersection of a
closed set of R andQ:

E =Q∩ {p ∈R | 2 < p2 < 3} =Q∩ {p ∈R | 2 ≤ p2 ≤ 3} =Q∩
(
[−p3,−p2]∪ [

p
2,
p

3]
)

,

where [−p3,−p2]∪ [
p

2,
p

3] is a closed in R and the second equality follows from the fact thatp
2 and

p
3 are irrational. E is open because

E =Q∩ {p ∈R | 2 < p2 < 3} =Q∩
(
(−p3,−p2)∪ (

p
2,
p

3)
)

.

By theorem 2.33, E is compact in Q iff E is compact in R. However E is not closed in R (E =?)
and hence not compact by Heine-Borel. E ⊂ [−2,2] is obviously bounded. ■
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2.18

Problem (Optional). Is there a nonempty perfect set in Rwhich contains no rational number?

Proof. Let E0 be a interval with your favorite irrational endpoints, say [−e,e]. Let {q1, q2, · · · }
be the enumeration of rational numbers in E0. We perform similar construction as in the
construction of Cantor set, except in stage k we exclude the kth rational number qk using a
subinterval with irrational endpoints. Now assume inductively that En has been constructed
such that En is a pairwise disjoint union of closed interval with irrational endpoints, each of
length at most 3−n ·2e and En does not contain qk for k ≤ n. Construct Fn+1 by removing the
middle third of each of the intervals in En . If qn+1 6∈ Fn+1, then let En+1 = Fn+1; otherwise qn+1

is contained in some interval [a,b], where a,b ∈ R \Q. Let ε > 0 be a irrational number less
than min(qn+1−a,b−qn+1) (Why?) and let En+1 = Fn+1 \(qn+1−ε, qn+1+ε) so that qn+1 6∈ En+1.
En is closed and bounded so En form a nested sequence of nonempty compact sets. Hence
P = ⋂∞

n=1 En is a nonempty compact set. It contains no rational number by construction. Let
x ∈ P , then for each n there exists a unique interval In = [an ,bn] among the disjoint intervals
whose union is En such that x ∈ In . Let yn = an if x 6= an and yn = bn if x = an so that yn ∈ P and
|yn −x| < 3−n ·2e. Hence x ∈ P ′ and P is perfect. ■

2.19

Problem. Prove that every connected metric space with at least two points is uncountable.

Proof. Let x, y be two distinct points in X . For every r ∈ (0,d(x, y)), there exists z ∈ X such that
d(x, z) = r , otherwise Br (x) and {p ∈ X | d(x, p) > r } are nonempty separated sets whose union
is X , contradicting the hypothesis that X is connected. Hence we’ve constructed a subset of X
with a bijection with [0,d(x, y)], which is uncountable. So X is uncountable. ■

2.20

Problem. Are closures and interiors of connected sets always connected?

Proof. Let A be connected subset of X . We claim if A ⊂ B ⊂ A then B is connected. Suppose on
the contrary B = E∪F , where E and F are nonempty separated sets. To arrive at a contradiction,
we would like Ẽ = A ∩E and F̃ = A ∩F to be nonempty separated sets whose union is A. It is
obviously Ẽ and F̃ are separated and Ẽ ∪ F̃ = A. It remains to check Ẽ and F̃ are nonempty.
Suppose F̃ =; and so A ⊂ E . Then since F 6= ;, F contains a limit point of A and so contains a
limit point of E , contradicting E ∩F =; because E and F are separated. Therefore, Ẽ and F̃ are
nonempty separated sets whose union is A, implying A is not connected, a contradiction.
The interior of a connected set may fail to be connected. Take, for example, the union of two
closed disks of radius 1 center at (1,0) and (−1,0) in R2, the interior of which are disjoint open
disks. ■
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2.21

Problem. Every convex subset of Rk is connected.

Proof. Let E ⊂ Rk be a convex set. Suppose on the contrary that there exists nonempty subsets
A,B ⊂ E such that A∪B = E and A, B are separated. Let a ∈ A, b ∈ B and define p(t ) = (1−t )a+tb
for t ∈R. Let A0 = p−1(A) and B0 = p−1(B). Assume towards contradiction that A0∩B0 6= ;. Then
there exists s ∈R such that p(s) ∈ B and for every r > 0, there exists t ∈R such that |s− t | < r and
p(t ) ∈ A. Now

|p(s), p(t )| = |s − t ||a −b| ≤ (|a|+ |b|)|s − t | < (|a|+ |b|)r.

Since r is arbitrary and p(t ) ∈ A, p(s) ∈ A ∩B , contradicting that A and B are separated. Hence
A0 and B0 are separated. Since E is convex, p(t ) ∈ E = A ∪ B for all t ∈ [0,1]. This implies
[0,1] ⊂ A0 ∪B0. So [0,1] = U ∪V , where U = A0 ∩ [0,1] and V = B0 ∩ [0,1]. Note that U ,V are
nonempty separated set, implying that [0,1] is not connected, a contradiction. Therefore, every
convex subset of Rk is connected. ■

2.24

Problem. Let X be a metric space in which every infinite subset has a limit point. Prove that X is
separable.

Proof. For each δ > 0, we construct the following set: pick x1 ∈ X . Having chosen x1, · · · , x j ∈
X , choose x j+1 ∈ X , if possible, so that d(xi , x j+1) ≥ δ for i = 1, · · · , j . This process must stop
after a finite number of steps, otherwise for any x ∈ X , B δ

2
(x) contains at most one point of the

infinite set, and hence no point could be a limit point of this set, contradicting the hypothesis.
So it follows that for each δ = 1

n > 0, X is covered by open balls of radius 1
n centered at the

finitely many points we constructed xn1, xn2, · · · , xnmn for some mn depending on n , i.e. X =⋃mn
j=1 B 1

n
(xn j ). Consider D = {xn j ,1 ≤ j ≤ mn ,n = 1,2, · · · }. D is countable since D is a countable

union of finite sets. Let x ∈ X and r > 0. Then there exists n ∈N such that r > 1
n by Archimedean

property of R. X = ⋃mn
j=1 B 1

n
(xn j ) implies x ∈ B 1

n
(xn j ) for some 1 ≤ j ≤ mn . So xn j ∈ Br (x).

Therefore D is a countable dense subset of X and X is separable. ■

2.25

Problem. Prove that every compact metric space K has a countable base, and that K is therefore
separable.

Proof. Let n ∈ N. ∪x∈X B 1
n

(x) is an open cover of K and since K is compact, K ⊂ ⋃mn
j=1 B 1

n
(xn j ).

Similar to the previous problem, D = {xn j ,1 ≤ j ≤ mn ,n = 1,2, · · · } is a countable dense subset
of X and B= {B 1

n
(xn j ),1 ≤ j ≤ mn ,n = 1,2, · · · } is a countable base for K . ■
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2.29

Problem. Prove that every open set inR is the union of an at most countable collection of disjoint
segments.

Proof. If U is open, for each x ∈U we construct the largest interval containing x: consider the
collection Ix of all open intervals I such that x ∈ I ⊂ U . It is easy to check that the union of
any family of open intervals containing a point is common is again an open interval (Verify!),
and hence Jx = ⋃

I∈Ix I is an open interval: it is the largest element of Ix . If x, y ∈U then either
Jx = Jy or Jx ∩ Jy = ;, for otherwise Jx ∪ Jy would be a larger open interval than Jx in Ix . Let
J = {Jx : x ∈ U }, where the members of J are disjoint, and U = ⋃

J∈J J . For each J ∈ J, pick a
rational number f (J ) ∈ J . This map f : J → Q thus defined is an injection, for if J 6= J ′ then
J ∩ J ′ =;; therefore J is countable. ■
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