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Disclaimer: The solution may contain errors or typos so use at your own risk.

2.12

Problem. Let K c R consist of 0 and the numbers 1/n, forn=1,2,3,---. Prove that K is compact
directly from the definition.

Proof. Let {Ug}qea be an open cover of K. Let ap € A be the index such that 0 € Ug,. Since Uy, is
open, there exists r > 0 such that (-r,r) € Ug,. This implies for all n > %, % € Uy,. Then choose
an open set Uy, in the open cover for each of the < € K where n < 1. Adjoining Uy, gives a finite
subcover of K. [ ]

2.16

Problem. RegardsQ as a metric space with d(p, q) = |p—q|. Let E be the set of all p € Q such that
2 < p? < 3. Show that E is closed and bounded in Q, but that E is not compact. Is E open in Q?

Proof. Notice that R is a metric space with distance function d(x, y) =[x — y|. Q c R is a metric
space in its own right by restricting d to @ x Q. The restricted distance function is called the
metric induced on Q by d and (Q, d) is a metric subspace of (R, d). By theorem 2.30, E c Q is
openin Qiff E = QnU for some open subset of U of R. Similarly, E c Qisclosedin Qiff E=QnV
for some closed subset of V of R (Verify!). Now E is closed because E is the intersection of a
closed set of R and Q:

E=QnipeR|2<p’<3}=QnipeR|2=p? <3}=0n([-V3,-V2IUIV2,V3]),

where [-v/3,—v/2] U [v2,/3] is a closed in R and the second equality follows from the fact that
v2 and /3 are irrational. E is open because

E:@ﬁ{p€R|2<p2<3}:@ﬂ((—\/§,—\/§)u(\/§,\/§)).

By theorem 2.33, E is compact in Q iff E is compact in R. However E is not closed in R (E =2)
and hence not compact by Heine-Borel. E c [-2,2] is obviously bounded. [ |
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2.18

Problem (Optional). Is there a nonempty perfect set in R which contains no rational number?

Proof. Let Ey be a interval with your favorite irrational endpoints, say [—e,e]. Let {g1,q2,*}
be the enumeration of rational numbers in E;,. We perform similar construction as in the
construction of Cantor set, except in stage k we exclude the kth rational number g using a
subinterval with irrational endpoints. Now assume inductively that E,, has been constructed
such that E, is a pairwise disjoint union of closed interval with irrational endpoints, each of
length at most 37" -2e and E,, does not contain g for k < n. Construct F,; by removing the
middle third of each of the intervals in E,,. If g,,+1 & F+1, then let E; 41 = Fj11; otherwise ¢q+1
is contained in some interval [a, b], where a,b € R\ Q. Let € > 0 be a irrational number less
than min(q+1—a,b— qn+1) (Why?) and let Eyy1 = Fj01\ (Gns1 — €, qns1 +€) so that g1 € Ept.
E, is closed and bounded so E, form a nested sequence of nonempty compact sets. Hence
P =5, E, is a nonempty compact set. It contains no rational number by construction. Let
x € P, then for each n there exists a unique interval I, = [a,, b,] among the disjoint intervals
whose union is E,, such that x € I,. Let y,, = a,, if x # a,, and y,, = b,, if x = a,, so that y, € P and
|yn — x| <37"-2e. Hence x € P' and P is perfect. [ ]

2.19

Problem. Prove that every connected metric space with at least two points is uncountable.

Proof. Let x, y be two distinct points in X. For every r € (0,d(x, y)), there exists z € X such that
d(x,z) = r, otherwise B,(x) and {p € X | d(x, p) > r} are nonempty separated sets whose union
is X, contradicting the hypothesis that X is connected. Hence we've constructed a subset of X
with a bijection with [0, d(x, y)], which is uncountable. So X is uncountable. [ |

2.20

Problem. Are closures and interiors of connected sets always connected?

Proof. Let Abe connected subset of X. We claim if A< B c A then B is connected. Suppose on
the contrary B = EUF, where E and F are nonempty separated sets. To arrive at a contradiction,
we would like E = AnE and F = AN F to be nonempty separated sets whose union is A. It is
obviously E and F are separated and EuU F = A. It remains to check E and F are nonempty.
Suppose F = @ and so A c E. Then since F # @, F contains a limit point of A and so contains a
limit point of E, contradicting ENF = ¢ because E and F are separated. Therefore, E and F are
nonempty separated sets whose union is A, implying A is not connected, a contradiction.

The interior of a connected set may fail to be connected. Take, for example, the union of two
closed disks of radius 1 center at (1,0) and (-1,0) in R?, the interior of which are disjoint open
disks. [ |
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2.21

Problem. Every convex subset of R* is connected.

Proof. Let E c RF be a convex set. Suppose on the contrary that there exists nonempty subsets
A,B c Esuchthat AUB = E and A, B are separated. Leta € A, b € Band define p(t) = (1-t)a+tb
forteR. Let Ag = p_l (A) and By = p_l (B). Assume towards contradiction that AynBy # @. Then
there exists s € R such that p(s) € B and for every r > 0, there exists ¢ € R such that |s—¢| < r and
p(1) € A. Now

Ip(s), p(2)l = Is—tlla— bl < (lal + |b])|s — t| < (lal +|b])r.

Since r is arbitrary and p(t) € A, p(s) € An B, contradicting that A and B are separated. Hence
Ap and By are separated. Since E is convex, p(f) € E = AUB for all ¢ € [0,1]. This implies
[0,1] € AgUBy. So [0,1] = U UV, where U = Agn [0,1] and V = Bon [0,1]. Note that U,V are
nonempty separated set, implying that [0, 1] is not connected, a contradiction. Therefore, every
convex subset of R¥ is connected. [ |

2.24

Problem. Let X be a metric space in which every infinite subset has a limit point. Prove that X is
separable.

Proof. For each 6 > 0, we construct the following set: pick x; € X. Having chosen x;,---,x j €
X, choose x4 € X, if possible, so that d(x;, x;+1) = 0 for i =1,---,j. This process must stop
after a finite number of steps, otherwise for any x € X, B; (x) contains at most one point of the
infinite set, and hence no point could be a limit point of 2this set, contradicting the hypothesis.
So it follows that for each 6 = % > 0, X is covered by open balls of radius % centered at the
finitely many points we constructed x,1, X2, , Xnm, for some m, dependingon n, i.e. X =
Um" Bi1 (xnj). Consider D = {x,j,1< j<my,n=1,2,---}. D is countable since D is a countable
union of finite sets. Let x € X and r > 0. Then there exists n € N such that r > % by Archimedean
property of R. X = U?ZBl(xnj) implies x € B1(x,;) for some 1 < j < my,. So x,; € B;(x).
Therefore D is a countable dense subset of X and X is separable. [ ]

2.25

Problem. Prove that every compact metric space K has a countable base, and that K is therefore
separable.

Proof. Let neN. UxexBl (x) is an open cover of K and since K is compact, K c U | B1(xnj).

Similar to the previous problem, ={xpj,1=j<myn=1,2,---}is a countable dense subset
of X and B = {B1 (xyj),1 < j <my,n=1,2,---} is a countable base for K. [ |
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2.29

Problem. Prove that every open setinR is the union of an at most countable collection of disjoint
segments.

Proof. 1f U is open, for each x € U we construct the largest interval containing x: consider the
collection J, of all open intervals I such that x € I c U. It is easy to check that the union of
any family of open intervals containing a point is common is again an open interval (Verify!),
and hence J; = Ujey, I is an open interval: it is the largest element of J. If x, y € U then either
Jx=Jyor Jyn], =@, for otherwise Jx U J, would be a larger open interval than J, in J,. Let
d = {Jx : x € U}, where the members of J are disjoint, and U = ¢y J. For each J € {, pick a
rational number f(J) € J. This map f : J — Q thus defined is an injection, for if J # J' then
JnJ' = @; therefore J is countable. [ ]



