Solution to Homework 4

Haiyu Huang

November 1, 2018

Disclaimer: The solution may contain errors or typos so use at your own risk.

2.12

Problem. Let $K \subset \mathbb{R}$ consist of 0 and the numbers $1 / n$, for $n=1,2,3, \cdots$. Prove that K is compact directly from the definition.

Proof. Let $\left\{U_{\alpha}\right\}_{\alpha \in A}$ be an open cover of K. Let $\alpha_{0} \in A$ be the index such that $0 \in U_{\alpha_{0}}$. Since $U_{\alpha_{0}}$ is open, there exists $r>0$ such that $(-r, r) \in U_{\alpha_{0}}$. This implies for all $n>\frac{1}{r}, \frac{1}{n} \in U_{\alpha_{0}}$. Then choose an open set $U_{\alpha_{n}}$ in the open cover for each of the $\frac{1}{n} \in K$ where $n \leq \frac{1}{r}$. Adjoining $U_{\alpha_{0}}$ gives a finite subcover of K.

2.16

Problem. Regards \mathbb{Q} as a metric space with $d(p, q)=|p-q|$. Let E be the set of all $p \in \mathbb{Q}$ such that $2<p^{2}<3$. Show that E is closed and bounded in \mathbb{Q}, but that E is not compact. Is E open in \mathbb{Q} ?

Proof. Notice that \mathbb{R} is a metric space with distance function $d(x, y)=|x-y| . \mathbb{Q} \subset \mathbb{R}$ is a metric space in its own right by restricting d to $\mathbb{Q} \times \mathbb{Q}$. The restricted distance function is called the metric induced on \mathbb{Q} by d and (\mathbb{Q}, d) is a metric subspace of (\mathbb{R}, d). By theorem 2.30, $E \subset \mathbb{Q}$ is open in \mathbb{Q} iff $E=\mathbb{Q} \cap U$ for some open subset of U of \mathbb{R}. Similarly, $E \subset \mathbb{Q}$ is closed in \mathbb{Q} iff $E=\mathbb{Q} \cap V$ for some closed subset of V of \mathbb{R} (Verify!). Now E is closed because E is the intersection of a closed set of \mathbb{R} and \mathbb{Q} :

$$
E=\mathbb{Q} \cap\left\{p \in \mathbb{R} \mid 2<p^{2}<3\right\}=\mathbb{Q} \cap\left\{p \in \mathbb{R} \mid 2 \leq p^{2} \leq 3\right\}=\mathbb{Q} \cap([-\sqrt{3},-\sqrt{2}] \cup[\sqrt{2}, \sqrt{3}]) \text {, }
$$

where $[-\sqrt{3},-\sqrt{2}] \cup[\sqrt{2}, \sqrt{3}]$ is a closed in \mathbb{R} and the second equality follows from the fact that $\sqrt{2}$ and $\sqrt{3}$ are irrational. E is open because

$$
E=\mathbb{Q} \cap\left\{p \in \mathbb{R} \mid 2<p^{2}<3\right\}=\mathbb{Q} \cap((-\sqrt{3},-\sqrt{2}) \cup(\sqrt{2}, \sqrt{3})) .
$$

By theorem 2.33, E is compact in \mathbb{Q} iff E is compact in \mathbb{R}. However E is not closed in $\mathbb{R}(\bar{E}=$? $)$ and hence not compact by Heine-Borel. $E \subset[-2,2]$ is obviously bounded.

2.18

Problem (Optional). Is there a nonempty perfect set in \mathbb{R} which contains no rational number?
Proof. Let E_{0} be a interval with your favorite irrational endpoints, say $[-e, e]$. Let $\left\{q_{1}, q_{2}, \cdots\right\}$ be the enumeration of rational numbers in E_{0}. We perform similar construction as in the construction of Cantor set, except in stage k we exclude the k th rational number q_{k} using a subinterval with irrational endpoints. Now assume inductively that E_{n} has been constructed such that E_{n} is a pairwise disjoint union of closed interval with irrational endpoints, each of length at most $3^{-n} \cdot 2 e$ and E_{n} does not contain q_{k} for $k \leq n$. Construct F_{n+1} by removing the middle third of each of the intervals in E_{n}. If $q_{n+1} \notin F_{n+1}$, then let $E_{n+1}=F_{n+1}$; otherwise q_{n+1} is contained in some interval $[a, b]$, where $a, b \in \mathbb{R} \backslash \mathbb{Q}$. Let $\epsilon>0$ be a irrational number less than $\min \left(q_{n+1}-a, b-q_{n+1}\right)($ Why? $)$ and let $E_{n+1}=F_{n+1} \backslash\left(q_{n+1}-\epsilon, q_{n+1}+\epsilon\right)$ so that $q_{n+1} \notin E_{n+1}$. E_{n} is closed and bounded so E_{n} form a nested sequence of nonempty compact sets. Hence $P=\bigcap_{n=1}^{\infty} E_{n}$ is a nonempty compact set. It contains no rational number by construction. Let $x \in P$, then for each n there exists a unique interval $I_{n}=\left[a_{n}, b_{n}\right]$ among the disjoint intervals whose union is E_{n} such that $x \in I_{n}$. Let $y_{n}=a_{n}$ if $x \neq a_{n}$ and $y_{n}=b_{n}$ if $x=a_{n}$ so that $y_{n} \in P$ and $\left|y_{n}-x\right|<3^{-n} \cdot 2 e$. Hence $x \in P^{\prime}$ and P is perfect.

2.19

Problem. Prove that every connected metric space with at least two points is uncountable.
Proof. Let x, y be two distinct points in X. For every $r \in(0, d(x, y))$, there exists $z \in X$ such that $d(x, z)=r$, otherwise $B_{r}(x)$ and $\{p \in X \mid d(x, p)>r\}$ are nonempty separated sets whose union is X, contradicting the hypothesis that X is connected. Hence we've constructed a subset of X with a bijection with $[0, d(x, y)]$, which is uncountable. So X is uncountable.

2.20

Problem. Are closures and interiors of connected sets always connected?
Proof. Let A be connected subset of X. We claim if $A \subset B \subset \bar{A}$ then B is connected. Suppose on the contrary $B=E \cup F$, where E and F are nonempty separated sets. To arrive at a contradiction, we would like $\tilde{E}=A \cap E$ and $\tilde{F}=A \cap F$ to be nonempty separated sets whose union is A. It is obviously \tilde{E} and \tilde{F} are separated and $\tilde{E} \cup \tilde{F}=A$. It remains to check \tilde{E} and \tilde{F} are nonempty. Suppose $\tilde{F}=\varnothing$ and so $A \subset E$. Then since $F \neq \varnothing, F$ contains a limit point of A and so contains a limit point of E, contradicting $\bar{E} \cap F=\varnothing$ because E and F are separated. Therefore, \tilde{E} and \tilde{F} are nonempty separated sets whose union is A, implying A is not connected, a contradiction.
The interior of a connected set may fail to be connected. Take, for example, the union of two closed disks of radius 1 center at $(1,0)$ and $(-1,0)$ in \mathbb{R}^{2}, the interior of which are disjoint open disks.

2.21

Problem. Every convex subset of \mathbb{R}^{k} is connected.
Proof. Let $E \subset \mathbb{R}^{k}$ be a convex set. Suppose on the contrary that there exists nonempty subsets $A, B \subset E$ such that $A \cup B=E$ and A, B are separated. Let $a \in A, b \in B$ and define $p(t)=(1-t) a+t b$ for $t \in \mathbb{R}$. Let $A_{0}=p^{-1}(A)$ and $B_{0}=p^{-1}(B)$. Assume towards contradiction that $\bar{A}_{0} \cap B_{0} \neq \varnothing$. Then there exists $s \in \mathbb{R}$ such that $p(s) \in B$ and for every $r>0$, there exists $t \in \mathbb{R}$ such that $|s-t|<r$ and $p(t) \in A$. Now

$$
|p(s), p(t)|=|s-t||a-b| \leq(|a|+|b|)|s-t|<(|a|+|b|) r .
$$

Since r is arbitrary and $p(t) \in A, p(s) \in \bar{A} \cap B$, contradicting that A and B are separated. Hence A_{0} and B_{0} are separated. Since E is convex, $p(t) \in E=A \cup B$ for all $t \in[0,1]$. This implies $[0,1] \subset A_{0} \cup B_{0}$. So $[0,1]=U \cup V$, where $U=A_{0} \cap[0,1]$ and $V=B_{0} \cap[0,1]$. Note that U, V are nonempty separated set, implying that $[0,1]$ is not connected, a contradiction. Therefore, every convex subset of \mathbb{R}^{k} is connected.

2.24

Problem. Let X be a metric space in which every infinite subset has a limit point. Prove that X is separable.

Proof. For each $\delta>0$, we construct the following set: pick $x_{1} \in X$. Having chosen $x_{1}, \cdots, x_{j} \in$ X, choose $x_{j+1} \in X$, if possible, so that $d\left(x_{i}, x_{j+1}\right) \geq \delta$ for $i=1, \cdots, j$. This process must stop after a finite number of steps, otherwise for any $x \in X, B_{\frac{\delta}{2}}(x)$ contains at most one point of the infinite set, and hence no point could be a limit point of this set, contradicting the hypothesis. So it follows that for each $\delta=\frac{1}{n}>0, X$ is covered by open balls of radius $\frac{1}{n}$ centered at the finitely many points we constructed $x_{n 1}, x_{n 2}, \cdots, x_{n m_{n}}$ for some m_{n} depending on n, i.e. $X=$ $\bigcup_{j=1}^{m_{n}} B_{\frac{1}{n}}\left(x_{n j}\right)$. Consider $D=\left\{x_{n j}, 1 \leq j \leq m_{n}, n=1,2, \cdots\right\}$. D is countable since D is a countable union of finite sets. Let $x \in X$ and $r>0$. Then there exists $n \in \mathbb{N}$ such that $r>\frac{1}{n}$ by Archimedean property of \mathbb{R}. $X=\bigcup_{j=1}^{m_{n}} B_{\frac{1}{n}}\left(x_{n j}\right)$ implies $x \in B_{\frac{1}{n}}\left(x_{n j}\right)$ for some $1 \leq j \leq m_{n}$. So $x_{n j} \in B_{r}(x)$. Therefore D is a countable dense subset of X and X is separable.

2.25

Problem. Prove that every compact metric space K has a countable base, and that K is therefore separable.

Proof. Let $n \in \mathbb{N}$. $\cup_{x \in X} B_{\frac{1}{n}}(x)$ is an open cover of K and since K is compact, $K \subset \bigcup_{j=1}^{m_{n}} B_{\frac{1}{n}}\left(x_{n j}\right)$. Similar to the previous problem, $D=\left\{x_{n j}, 1 \leq j \leq m_{n}, n=1,2, \cdots\right\}$ is a countable dense subset of X and $\mathcal{B}=\left\{B_{\frac{1}{n}}\left(x_{n j}\right), 1 \leq j \leq m_{n}, n=1,2, \cdots\right\}$ is a countable base for K.

2.29

Problem. Prove that every open set in \mathbb{R} is the union of an at most countable collection of disjoint segments.

Proof. If U is open, for each $x \in U$ we construct the largest interval containing x : consider the collection \mathcal{J}_{x} of all open intervals I such that $x \in I \subset U$. It is easy to check that the union of any family of open intervals containing a point is common is again an open interval (Verify!), and hence $J_{x}=\bigcup_{I \in \mathcal{J}_{x}} I$ is an open interval: it is the largest element of \mathcal{J}_{x}. If $x, y \in U$ then either $J_{x}=J_{y}$ or $J_{x} \cap J_{y}=\varnothing$, for otherwise $J_{x} \cup J_{y}$ would be a larger open interval than J_{x} in \mathcal{J}_{x}. Let $\mathcal{J}=\left\{J_{x}: x \in U\right\}$, where the members of \mathcal{J} are disjoint, and $U=\bigcup_{J \in \mathcal{J}} J$. For each $J \in \mathcal{J}$, pick a rational number $f(J) \in J$. This map $f: \mathscr{J} \rightarrow \mathbb{Q}$ thus defined is an injection, for if $J \neq J^{\prime}$ then $J \cap J^{\prime}=\varnothing$; therefore \mathcal{J} is countable.

