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Disclaimer: The solution may contain errors or typos so use at your own risk.

3.4

Problem. Find the upper and lower limits of the sequence {sn} defined by

s1 = 0; s2m = s2m−1

2
; s2m+1 = 1

2
+ s2m .

Proof. s2m+2 = s2m+1
2 = 1

4 + 1
2 s2m . With this recurrence, it can be shown by induction that s2m =

2−1 −2−k . So it follows that

sn =
{

2−1 −2−k n = 2k

1−2−k n = 2k +1
.

Now it is easy to see that limsupn→∞ sn = limk→∞ s2k+1 = 1 and liminfn→∞ sn = limk→∞ s2k =
2−1. ■

3.5

Problem. For any two real sequences {an}, {bn}, prove that

limsup
n→∞

(an +bn) ≤ limsup
n→∞

an + limsup
n→∞

bn ,

provided the sum on the right is not of the form ∞−∞.

Proof. If either limsup an =∞or limsupbn =∞, there is nothing to prove. So assume limsup an <
∞ and limsupbn <∞. Let ε> 0. There exists N1 > 0 such that an < limsup an + ε

2 for all n ≥ N1

and there exists N2 > 0 such that bn < limsupbn + ε
2 for all n ≥ N2. So for n ≥ N = max(N1, N2),

an +bn ≤ limsup an + limsupbn +ε. Therefore, limsup(an +bn) ≤ limsup an + limsupbn .
Alternatively, note that limsupn→∞ xn = limn→∞ supk≥n xk = infn≥0 supm≥n xm . Fix n > 0. Observe
that for all m ≥ n

(am +bm) ≤ sup
m≥n

am + sup
m≥n

bm .

Take the sup over all m ≥ n,

sup
m≥n

(am +bm) ≤ sup
m≥n

am + sup
m≥n

bm .
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Taking the limit as n →∞ (Why does the limit exists?) ,

limsup
n→∞

(an +bn) = lim
n→∞ sup

m≥n
(am +bm) ≤ lim

n→∞ sup
m≥n

am + lim
n→∞ sup

m≥n
bm = limsup

n→∞
an + limsup

n→∞
bn .

■

3.6

Problem. Investigate the behavior of
∑

an if

(a) an =p
n +1−p

n;

(b) an =
p

n+1−pn
n ;

(c) an = ( n
p

n −1)n ;

(d) an = 1
1+zn , for z ∈C.

Proof. (a) The partial sum sn =p
n +1−1 →∞ so

∑
an diverges.

(b) an =
p

n+1−pn
n ·

p
n+1+pnp
n+1+pn

= 1
n(

p
n+1+pn)

≤ 1
2n3/2 , which converges as a p-series with p = 3/2 >

1. So
∑

an converges by comparison test.

(c) limsup n
p

an = lim( n
p

n −1) = 0 < 1, so the series converges by root test.

(d) If |z| > 1, then

limsup
n→∞

∣∣∣∣an+1

an

∣∣∣∣= limsup
n→∞

∣∣∣∣ 1+ zn

1+ zn+1

∣∣∣∣= limsup
n→∞

∣∣∣∣ z−n +1

z−n + z

∣∣∣∣= 1

|z| < 1,

where limsup |z−n | = lim |z|−n → 0 as |z| > 1. So
∑

an converges by ratio test. If |z| ≤ 1, then
by triangle inequality

|an | = 1

|1+ zn | ≥
1

1+|z|n ≥ 1

2
.

Since an 6→ 0,
∑

an diverges.
■

3.7

Problem. Prove that the convergence of
∑

an implies the convergences of
∑ p

an

n if an ≥ 0.

Proof. By Cauchy Schwarz inequality,

∑ p
an

n
≤ (∑

an
)1/2 ·

(∑ 1

n2

)1/2

,

which is the product of two convergent series. ■
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Problem 2

Assume that the series
∑∞

n=1 a2
n converges. Prove that

∑∞
n=1

an
n converges.

Proof. Let bn = a2
n ≥ 0. By the previous problem,

∑
a2

n = ∑
bn converges implies that

∑ p
bn

n =∑ |an |
n converges. So

∑ an
n converges. ■

3.8

Problem. If
∑

an converges, and if {bn} is monotonic and bounded, prove that
∑

anbn converges.

Proof. Let An = ∑n
k=1 ak (A0 = 0), so that an = An − An−1 for n = 1,2, · · · . An converges implies

An is bounded. Let M be an upper bound for An . {bn} is monotonic and bounded implies
the convergence of {bn}. Since {bn} and {An} converges, the product {bn An} also converges. In
particular both {bn} and {bn An} are Cauchy sequences. Let ε> 0. Choose N sufficiently large so
that the following inequalities hold ∀m,n ≥ N :

|bn An −bm Am | < ε

2
; |bm −bn | < ε

2M
.

Then if n > m ≥ N , by Abel’s summation by parts formula

n∑
k=m+1

ak bk = bn An −bm Am +
n−1∑
k=m

(bk −bk+1)Ak .

Since the sequence {bk } is monotonic, we have∣∣∣∣∣ n−1∑
k=m

(bk −bk+1)Ak

∣∣∣∣∣≤ M
n−1∑
k=m

|bk −bk+1| = M

∣∣∣∣∣ n−1∑
k=m

(bk −bk+1)

∣∣∣∣∣= M |bm −bn | < M · ε

2M
= ε

2
.

Therefore, ∣∣∣∣∣ n∑
k=m+1

ak bk

∣∣∣∣∣≤ |bn An −bm Am |+
∣∣∣∣∣ n−1∑
k=m

(bk −bk+1)Ak

∣∣∣∣∣< ε

2
+ ε

2
= ε.

Hence
∑

anbn is Cauchy and thus converges by Cauchy criterion. ■
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3.14

Problem. If {sn} is a complex sequence, define its arithmetic mean σn by

σn = s0 + s1 +·· ·+ sn

n +1
(n = 0,1,2, · · · ).

(a) If lim sn = s, prove that limσn = s.

(b) Construct a sequence {sn} which does not converge, although limσn = 0.

(c) Can it happen that sn > 0 for all n and that limsup sn =∞, although limσn = 0.

(d) Put an = sn − sn−1, for n ≥ 1. Show that sn −σn = 1
n+1

∑n
k=1 kak . Assume lim(nan) = 0 and

that {σn} converges. Prove that {sn} converges.

Proof. (a) Let ε> 0. Let tk = sk − s.

|σn − s| = ∣∣ s0 + s1 +·· ·+ sn

n +1
− s

∣∣
= ∣∣ (s0 − s)+ (s1 − s)+·· ·+ (sn − s)

n +1

∣∣
= ∣∣ t0 + t1 +·· ·+ tn

n +1

∣∣.
Since lim sn = s, ∃N > 0 such that |tn | < ε if n ≥ N . Now

|σn − s| = ∣∣ t0 + t1 +·· ·+ tn

n +1

∣∣
= ∣∣ t0 + t1 +·· ·+ tN

n +1
+ tN+1 +·· ·+ tn

n +1

∣∣
≤ |t0|+ |t1|+ · · ·+ |tN |

n +1
+ |tN+1|+ · · ·+ |tn |

n +1

Note that |tN+1|+ · · ·+ |tn |
n +1

< n −N

n +1
·ε< ε

Moreover, by Archimedean property of R, ∃N ′ such that |t0|+|t1|+···+|tN |
N ′+1 < ε. Now if n ≥

max{N , N ′}, then

|σn − s| ≤ |t0|+ |t1|+ · · ·+ |tN |
n +1

+ |tN+1|+ · · ·+ |tn |
n +1

< 2ε.

Hence limσn = s.

(b) Let sn = (−1)n . Then σn = 0 if n is odd and σn = 1
n+1 if n is even. Thus σn → 0 even though

sn does not converge.
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(c) Heuristically, we need to construct a positive sequence {sn} with a subsequence goes to

infinity, but
∑n

k=0 sk

n+1 → 0. For example, this can be achieved if
∑

sn grows slower than
p

n

with a subsequence grows as n1/4. Let sn =
{

k n = k4

1
n2 n 6= k4 . The for k4 ≤ n < (k +1)4,

σn ≤ 1

n +1

n∑
m=1

1

m2
+ 1

n +1

k∑
m=1

1

m

= 1

n +1

n∑
m=1

1

m2
+ 1

n +1
· k(k +1)

2
.

The first 1
n+1

∑n
m=1

1
m2 goes to 0 by part (a) and for the second term, 1

n+1 · k(k+1)
2 ≤ 1

k4 · k(k+1)
2 ≤

1
2k2 → 0 as k →∞. As n →∞, k →∞ since (k+1)4 > n. Therefore, σn → 0 as n →∞ whereas

sn=k4 = n1/4 →∞.

(d) Let a0 = s0 so that

sn −σn = (n +1)sn −∑n
k=0 sk

n +1

= (nsn −nsn−1)+ ((n −1)sn−1 − (n −1)sn−2)+·· ·+ (s1 − s0)

n +1

= 1

n +1

n∑
k=1

kak .

If nan → 0, then by part (a) the average of nan → 0, which is the right hand side of the above
equation. Therefore sn −σn → 0 and so sn converges.

■

Problem 1

Let f : N → R and || f || = (∑∞
n=1 | f (n)|2)1/2

. Define Let l 2 = { f : N → R : || f || < ∞}. For two
sequences f , g ∈ l 2, define d( f , g ) = || f − g ||.

(i) Show that the distance is well-defined and that l 2 with this distance is a metric space;

(ii) For each j ≥ 1, consider the sequence e j whose terms are all equal to 0 except for the j th
term which is 1. Show that for each j ≥ 1, e j is an element in l 2 and show that the sequence
{e j } j≥1 is not Cauchy in l 2;

(iii) In the metric space consider the closed unit ball of center the zero sequence K = { f ∈ l 2 :
|| f || ≤ 1}. Show that K is closed and bounded but not compact by exhibiting a sequence in
K that does not have a convergent subsequence.

Proof. (i) To show the distance function is well-defined, it suffices to show f +g ∈ l 2 for f , g ∈
l 2. Observe that

| f + g |2 ≤ (| f |+ |g |)2 ≤ (
2max(| f |, |g |))2 ≤ 4(| f |2 +|g |2).
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It is clear that d( f , f ) = 0, d( f , g ) > 0 if f 6= g , and d( f , g ) = d(g , f ) for f , g ∈ l 2. For triangle
inequality, note that | f + g |2 ≤ (| f |+ |g |)| f + g | = | f || f + g |+ |g || f + g |. By Cauchy Schwarz
inequality,

∞∑
n=1

| f (n)+ g (n)|2 ≤
∞∑

n=1
| f (n)|| f (n)+ g (n)|+

∞∑
n=1

|g (n)|| f (n)+ g (n)|

≤
( ∞∑

n=1
| f (n)|2

)1/2 ( ∞∑
n=1

| f (n)+ g (n)|2
)1/2

+
( ∞∑

n=1
|g (n)|2

)1/2 ( ∞∑
n=1

| f (n)+ g (n)|2
)1/2

= (|| f ||+ ||g ||)
( ∞∑

n=1
| f (n)+ g (n)|2

)1/2

.

Therefore, || f + g || = (∑∞
n=1 | f (n)+ g (n)|2)1/2 ≤ || f ||+ ||g ||.

(ii) For each j ≥ 1, ||e j || = 1 so e j ∈ l 2. {e j } j≥1 ∈ l 2 is not Cauchy because ||ei − e j || =
p

2 for all
i 6= j .

(iii) K is bounded by definition. Let fn ∈ l 2 and suppose fn → f . Let ε > 0. Then there exists
N such that || fn − f || < ε for n ≥ N . So || f || ≤ || f − fN ||+ || fN || < ε+1. Hence || f || ≤ 1 and
f ∈ l 2. This shows that K is closed. Observe {e j } j≥1 defined in part (ii) is a sequence in K ,
which does not have a convergent subsequence for the same reason that ||ei −e j || =

p
2 for

all i 6= j .
■

Problem 3

Let {an} be a sequence of monotonically decreasing positive numbers with the property that
an ≥ 10a2n for all n ∈N. Prove that

∑∞
n=1 an converges.

Proof. Note that a2n ≤ 10−1a2n−1 ≤ 10−n a1 and for all 2k ≤ n < 2k+1, a2k ≥ an since an is monotonically
decreasing.

∞∑
n=1

an = a1 + (a2 +a3)+ (a4 +a5 +a6 +a7)+·· ·

≤ a1 + (a2 +a2)+ (a4 +a4 +a4 +a4)+·· ·
= a1 +2a2 +4a4 +8a8 +·· ·

≤ a1 + 2

10
a1 + 22

102
a1 + 23

103
a1 +·· ·

= a1

∞∑
k=0

(
1

5

)k

= 5

4
a1

<∞.

■
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