Solution to Homework 6

Haiyu Huang

November 17, 2018

Disclaimer: The solution may contain errors or typos so use at your own risk.

3.4

Problem. Find the upper and lower limits of the sequence $\left\{s_{n}\right\}$ defined by

$$
s_{1}=0 ; \quad s_{2 m}=\frac{s_{2 m-1}}{2} ; \quad s_{2 m+1}=\frac{1}{2}+s_{2 m} .
$$

Proof. $s_{2 m+2}=\frac{s_{2 m+1}}{2}=\frac{1}{4}+\frac{1}{2} s_{2 m}$. With this recurrence, it can be shown by induction that $s_{2 m}=$ $2^{-1}-2^{-k}$. So it follows that

$$
s_{n}=\left\{\begin{array}{ll}
2^{-1}-2^{-k} & n=2 k \\
1-2^{-k} & n=2 k+1
\end{array} .\right.
$$

Now it is easy to see that $\limsup _{n \rightarrow \infty} s_{n}=\lim _{k \rightarrow \infty} s_{2 k+1}=1$ and $\liminf _{n \rightarrow \infty} s_{n}=\lim _{k \rightarrow \infty} s_{2 k}=$ 2^{-1}.

3.5

Problem. For any two real sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$, prove that

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n},
$$

provided the sum on the right is not of the form $\infty-\infty$.
Proof. If either $\limsup a_{n}=\infty$ or $\lim \sup b_{n}=\infty$, there is nothing to prove. So assume limsup $a_{n}<$ ∞ and $\limsup b_{n}<\infty$. Let $\epsilon>0$. There exists $N_{1}>0$ such that $a_{n}<\limsup a_{n}+\frac{\epsilon}{2}$ for all $n \geq N_{1}$ and there exists $N_{2}>0$ such that $b_{n}<\limsup b_{n}+\frac{\epsilon}{2}$ for all $n \geq N_{2}$. So for $n \geq N=\max \left(N_{1}, N_{2}\right)$, $a_{n}+b_{n} \leq \limsup a_{n}+\limsup b_{n}+\epsilon$. Therefore, $\limsup \left(a_{n}+b_{n}\right) \leq \limsup a_{n}+\limsup b_{n}$. Alternatively, note that $\limsup \operatorname{sim}_{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \sup _{k \geq n} x_{k}=\inf _{n \geq 0} \sup _{m \geq n} x_{m}$. Fix $n>0$. Observe that for all $m \geq n$

$$
\left(a_{m}+b_{m}\right) \leq \sup _{m \geq n} a_{m}+\sup _{m \geq n} b_{m} .
$$

Take the sup over all $m \geq n$,

$$
\sup _{m \geq n}\left(a_{m}+b_{m}\right) \leq \sup _{m \geq n} a_{m}+\sup _{m \geq n} b_{m} .
$$

Taking the limit as $n \rightarrow \infty$ (Why does the limit exists?),

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} \sup _{m \geq n}\left(a_{m}+b_{m}\right) \leq \lim _{n \rightarrow \infty} \sup _{m \geq n} a_{m}+\lim _{n \rightarrow \infty} \sup _{m \geq n} b_{m}=\limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n} .
$$

3.6

Problem. Investigate the behavior of $\sum a_{n}$ if
(a) $a_{n}=\sqrt{n+1}-\sqrt{n}$;
(b) $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}$;
(c) $a_{n}=(\sqrt[n]{n}-1)^{n}$;
(d) $a_{n}=\frac{1}{1+z^{n}}$, for $z \in \mathbb{C}$.

Proof. (a) The partial sum $s_{n}=\sqrt{n+1}-1 \rightarrow \infty$ so $\sum a_{n}$ diverges.
(b) $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n} \cdot \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{n(\sqrt{n+1}+\sqrt{n})} \leq \frac{1}{2 n^{3 / 2}}$, which converges as a p-series with $p=3 / 2>$ 1 . So $\sum a_{n}$ converges by comparison test.
(c) $\limsup \sqrt[n]{a_{n}}=\lim (\sqrt[n]{n}-1)=0<1$, so the series converges by root test.
(d) If $|z|>1$, then

$$
\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\limsup _{n \rightarrow \infty}\left|\frac{1+z^{n}}{1+z^{n+1}}\right|=\limsup _{n \rightarrow \infty}\left|\frac{z^{-n}+1}{z^{-n}+z}\right|=\frac{1}{|z|}<1,
$$

where $\limsup \left|z^{-n}\right|=\lim |z|^{-n} \rightarrow 0$ as $|z|>1$. So $\sum a_{n}$ converges by ratio test. If $|z| \leq 1$, then by triangle inequality

$$
\left|a_{n}\right|=\frac{1}{\left|1+z^{n}\right|} \geq \frac{1}{1+|z|^{n}} \geq \frac{1}{2} .
$$

Since $a_{n} \nrightarrow 0, \sum a_{n}$ diverges.

3.7

Problem. Prove that the convergence of $\sum a_{n}$ implies the convergences of $\sum \frac{\sqrt{a_{n}}}{n}$ if $a_{n} \geq 0$.
Proof. By Cauchy Schwarz inequality,

$$
\sum \frac{\sqrt{a_{n}}}{n} \leq\left(\sum a_{n}\right)^{1 / 2} \cdot\left(\sum \frac{1}{n^{2}}\right)^{1 / 2}
$$

which is the product of two convergent series.

Problem 2

Assume that the series $\sum_{n=1}^{\infty} a_{n}^{2}$ converges. Prove that $\sum_{n=1}^{\infty} \frac{a_{n}}{n}$ converges.
Proof. Let $b_{n}=a_{n}^{2} \geq 0$. By the previous problem, $\sum a_{n}^{2}=\sum b_{n}$ converges implies that $\sum \frac{\sqrt{b_{n}}}{n}=$ $\sum \frac{\left|a_{n}\right|}{n}$ converges. So $\sum \frac{a_{n}}{n}$ converges.

3.8

Problem. If $\sum a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\sum a_{n} b_{n}$ converges.
Proof. Let $A_{n}=\sum_{k=1}^{n} a_{k}\left(A_{0}=0\right)$, so that $a_{n}=A_{n}-A_{n-1}$ for $n=1,2, \cdots . A_{n}$ converges implies A_{n} is bounded. Let M be an upper bound for A_{n}. $\left\{b_{n}\right\}$ is monotonic and bounded implies the convergence of $\left\{b_{n}\right\}$. Since $\left\{b_{n}\right\}$ and $\left\{A_{n}\right\}$ converges, the product $\left\{b_{n} A_{n}\right\}$ also converges. In particular both $\left\{b_{n}\right\}$ and $\left\{b_{n} A_{n}\right\}$ are Cauchy sequences. Let $\epsilon>0$. Choose N sufficiently large so that the following inequalities hold $\forall m, n \geq N$:

$$
\left|b_{n} A_{n}-b_{m} A_{m}\right|<\frac{\epsilon}{2} ; \quad\left|b_{m}-b_{n}\right|<\frac{\epsilon}{2 M} .
$$

Then if $n>m \geq N$, by Abel's summation by parts formula

$$
\sum_{k=m+1}^{n} a_{k} b_{k}=b_{n} A_{n}-b_{m} A_{m}+\sum_{k=m}^{n-1}\left(b_{k}-b_{k+1}\right) A_{k} .
$$

Since the sequence $\left\{b_{k}\right\}$ is monotonic, we have

$$
\left|\sum_{k=m}^{n-1}\left(b_{k}-b_{k+1}\right) A_{k}\right| \leq M \sum_{k=m}^{n-1}\left|b_{k}-b_{k+1}\right|=M\left|\sum_{k=m}^{n-1}\left(b_{k}-b_{k+1}\right)\right|=M\left|b_{m}-b_{n}\right|<M \cdot \frac{\epsilon}{2 M}=\frac{\epsilon}{2} .
$$

Therefore,

$$
\left|\sum_{k=m+1}^{n} a_{k} b_{k}\right| \leq\left|b_{n} A_{n}-b_{m} A_{m}\right|+\left|\sum_{k=m}^{n-1}\left(b_{k}-b_{k+1}\right) A_{k}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

Hence $\sum a_{n} b_{n}$ is Cauchy and thus converges by Cauchy criterion.

3.14

Problem. If $\left\{s_{n}\right\}$ is a complex sequence, define its arithmetic mean σ_{n} by

$$
\sigma_{n}=\frac{s_{0}+s_{1}+\cdots+s_{n}}{n+1} \quad(n=0,1,2, \cdots) .
$$

(a) If $\lim s_{n}=s$, prove that $\lim \sigma_{n}=s$.
(b) Construct a sequence $\left\{s_{n}\right\}$ which does not converge, although $\lim \sigma_{n}=0$.
(c) Can it happen that $s_{n}>0$ for all n and that $\limsup s_{n}=\infty$, although $\lim \sigma_{n}=0$.
(d) Put $a_{n}=s_{n}-s_{n-1}$, for $n \geq 1$. Show that $s_{n}-\sigma_{n}=\frac{1}{n+1} \sum_{k=1}^{n} k a_{k}$. Assume $\lim \left(n a_{n}\right)=0$ and that $\left\{\sigma_{n}\right\}$ converges. Prove that $\left\{s_{n}\right\}$ converges.

Proof. (a) Let $\epsilon>0$. Let $t_{k}=s_{k}-s$.

$$
\begin{aligned}
\left|\sigma_{n}-s\right| & =\left|\frac{s_{0}+s_{1}+\cdots+s_{n}}{n+1}-s\right| \\
& =\left|\frac{\left(s_{0}-s\right)+\left(s_{1}-s\right)+\cdots+\left(s_{n}-s\right)}{n+1}\right| \\
& =\left|\frac{t_{0}+t_{1}+\cdots+t_{n}}{n+1}\right|
\end{aligned}
$$

Since $\lim s_{n}=s, \exists N>0$ such that $\left|t_{n}\right|<\epsilon$ if $n \geq N$. Now

$$
\begin{aligned}
\left|\sigma_{n}-s\right| & =\left|\frac{t_{0}+t_{1}+\cdots+t_{n}}{n+1}\right| \\
& =\left|\frac{t_{0}+t_{1}+\cdots+t_{N}}{n+1}+\frac{t_{N+1}+\cdots+t_{n}}{n+1}\right| \\
& \leq \frac{\left|t_{0}\right|+\left|t_{1}\right|+\cdots+\left|t_{N}\right|}{n+1}+\frac{\left|t_{N+1}\right|+\cdots+\left|t_{n}\right|}{n+1}
\end{aligned}
$$

Note that

$$
\frac{\left|t_{N+1}\right|+\cdots+\left|t_{n}\right|}{n+1}<\frac{n-N}{n+1} \cdot \epsilon<\epsilon
$$

Moreover, by Archimedean property of $\mathbb{R}, \exists N^{\prime}$ such that $\frac{\left|t_{0}\right|+\left|t_{1}\right|+\cdots+\left|t_{N}\right|}{N^{\prime}+1}<\epsilon$. Now if $n \geq$ $\max \left\{N, N^{\prime}\right\}$, then

$$
\left|\sigma_{n}-s\right| \leq \frac{\left|t_{0}\right|+\left|t_{1}\right|+\cdots+\left|t_{N}\right|}{n+1}+\frac{\left|t_{N+1}\right|+\cdots+\left|t_{n}\right|}{n+1}<2 \epsilon .
$$

Hence $\lim \sigma_{n}=s$.
(b) Let $s_{n}=(-1)^{n}$. Then $\sigma_{n}=0$ if n is odd and $\sigma_{n}=\frac{1}{n+1}$ if n is even. Thus $\sigma_{n} \rightarrow 0$ even though s_{n} does not converge.
(c) Heuristically, we need to construct a positive sequence $\left\{s_{n}\right\}$ with a subsequence goes to infinity, but $\frac{\sum_{k=0}^{n} s_{k}}{n+1} \rightarrow 0$. For example, this can be achieved if $\sum s_{n}$ grows slower than \sqrt{n} with a subsequence grows as $n^{1 / 4}$. Let $s_{n}=\left\{\begin{array}{ll}k & n=k^{4} \\ \frac{1}{n^{2}} & n \neq k^{4}\end{array}\right.$. The for $k^{4} \leq n<(k+1)^{4}$,

$$
\begin{aligned}
\sigma_{n} & \leq \frac{1}{n+1} \sum_{m=1}^{n} \frac{1}{m^{2}}+\frac{1}{n+1} \sum_{m=1}^{k} \frac{1}{m} \\
& =\frac{1}{n+1} \sum_{m=1}^{n} \frac{1}{m^{2}}+\frac{1}{n+1} \cdot \frac{k(k+1)}{2} .
\end{aligned}
$$

The first $\frac{1}{n+1} \sum_{m=1}^{n} \frac{1}{m^{2}}$ goes to 0 by part (a) and for the second term, $\frac{1}{n+1} \cdot \frac{k(k+1)}{2} \leq \frac{1}{k^{4}} \cdot \frac{k(k+1)}{2} \leq$ $\frac{1}{2 k^{2}} \rightarrow 0$ as $k \rightarrow \infty$. As $n \rightarrow \infty, k \rightarrow \infty$ since $(k+1)^{4}>n$. Therefore, $\sigma_{n} \rightarrow 0$ as $n \rightarrow \infty$ whereas $s_{n=k^{4}}=n^{1 / 4} \rightarrow \infty$.
(d) Let $a_{0}=s_{0}$ so that

$$
\begin{aligned}
s_{n}-\sigma_{n} & =\frac{(n+1) s_{n}-\sum_{k=0}^{n} s_{k}}{n+1} \\
& =\frac{\left(n s_{n}-n s_{n-1}\right)+\left((n-1) s_{n-1}-(n-1) s_{n-2}\right)+\cdots+\left(s_{1}-s_{0}\right)}{n+1} \\
& =\frac{1}{n+1} \sum_{k=1}^{n} k a_{k} .
\end{aligned}
$$

If $n a_{n} \rightarrow 0$, then by part (a) the average of $n a_{n} \rightarrow 0$, which is the right hand side of the above equation. Therefore $s_{n}-\sigma_{n} \rightarrow 0$ and so s_{n} converges.

Problem 1

Let $f: \mathbb{N} \rightarrow \mathbb{R}$ and $\|f\|=\left(\sum_{n=1}^{\infty}|f(n)|^{2}\right)^{1 / 2}$. Define Let $l^{2}=\{f: \mathbb{N} \rightarrow \mathbb{R}:\|f\|<\infty\}$. For two sequences $f, g \in l^{2}$, define $d(f, g)=\|f-g\|$.
(i) Show that the distance is well-defined and that l^{2} with this distance is a metric space;
(ii) For each $j \geq 1$, consider the sequence e_{j} whose terms are all equal to 0 except for the j th term which is 1 . Show that for each $j \geq 1, e_{j}$ is an element in l^{2} and show that the sequence $\left\{e_{j}\right\}_{j \geq 1}$ is not Cauchy in l^{2};
(iii) In the metric space consider the closed unit ball of center the zero sequence $K=\left\{f \in l^{2}\right.$: $\|f\| \leq 1\}$. Show that K is closed and bounded but not compact by exhibiting a sequence in K that does not have a convergent subsequence.

Proof. (i) To show the distance function is well-defined, it suffices to show $f+g \in l^{2}$ for $f, g \in$ l^{2}. Observe that

$$
|f+g|^{2} \leq(|f|+|g|)^{2} \leq(2 \max (|f|,|g|))^{2} \leq 4\left(|f|^{2}+|g|^{2}\right) .
$$

It is clear that $d(f, f)=0, d(f, g)>0$ if $f \neq g$, and $d(f, g)=d(g, f)$ for $f, g \in l^{2}$. For triangle inequality, note that $|f+g|^{2} \leq(|f|+|g|)|f+g|=|f||f+g|+|g||f+g|$. By Cauchy Schwarz inequality,

$$
\begin{aligned}
\sum_{n=1}^{\infty}|f(n)+g(n)|^{2} & \leq \sum_{n=1}^{\infty}|f(n)||f(n)+g(n)|+\sum_{n=1}^{\infty}|g(n) \| f(n)+g(n)| \\
& \leq\left(\sum_{n=1}^{\infty}|f(n)|^{2}\right)^{1 / 2}\left(\sum_{n=1}^{\infty}|f(n)+g(n)|^{2}\right)^{1 / 2}+\left(\sum_{n=1}^{\infty}|g(n)|^{2}\right)^{1 / 2}\left(\sum_{n=1}^{\infty}|f(n)+g(n)|^{2}\right)^{1 / 2} \\
& =(\|f\|+\|g\|)\left(\sum_{n=1}^{\infty}|f(n)+g(n)|^{2}\right)^{1 / 2} .
\end{aligned}
$$

Therefore, $\|f+g\|=\left(\sum_{n=1}^{\infty}|f(n)+g(n)|^{2}\right)^{1 / 2} \leq\|f\|+\|g\|$.
(ii) For each $j \geq 1,\left\|e_{j}\right\|=1$ so $e_{j} \in l^{2} .\left\{e_{j}\right\}_{j \geq 1} \in l^{2}$ is not Cauchy because $\left\|e_{i}-e_{j}\right\|=\sqrt{2}$ for all $i \neq j$.
(iii) K is bounded by definition. Let $f_{n} \in l^{2}$ and suppose $f_{n} \rightarrow f$. Let $\epsilon>0$. Then there exists N such that $\left\|f_{n}-f\right\|<\epsilon$ for $n \geq N$. So $\|f\| \leq\left\|f-f_{N}\right\|+\left\|f_{N}\right\|<\epsilon+1$. Hence $\|f\| \leq 1$ and $f \in l^{2}$. This shows that K is closed. Observe $\left\{e_{j}\right\}_{j \geq 1}$ defined in part (ii) is a sequence in K, which does not have a convergent subsequence for the same reason that $\left\|e_{i}-e_{j}\right\|=\sqrt{2}$ for all $i \neq j$.

Problem 3

Let $\left\{a_{n}\right\}$ be a sequence of monotonically decreasing positive numbers with the property that $a_{n} \geq 10 a_{2 n}$ for all $n \in \mathbb{N}$. Prove that $\sum_{n=1}^{\infty} a_{n}$ converges.
Proof. Note that $a_{2^{n}} \leq 10^{-1} a_{2^{n-1}} \leq 10^{-n} a_{1}$ and for all $2^{k} \leq n<2^{k+1}, a_{2^{k}} \geq a_{n}$ since a_{n} is monotonically decreasing.

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{n} & =a_{1}+\left(a_{2}+a_{3}\right)+\left(a_{4}+a_{5}+a_{6}+a_{7}\right)+\cdots \\
& \leq a_{1}+\left(a_{2}+a_{2}\right)+\left(a_{4}+a_{4}+a_{4}+a_{4}\right)+\cdots \\
& =a_{1}+2 a_{2}+4 a_{4}+8 a_{8}+\cdots \\
& \leq a_{1}+\frac{2}{10} a_{1}+\frac{2^{2}}{10^{2}} a_{1}+\frac{2^{3}}{10^{3}} a_{1}+\cdots \\
& =a_{1} \sum_{k=0}^{\infty}\left(\frac{1}{5}\right)^{k} \\
& =\frac{5}{4} a_{1} \\
& <\infty
\end{aligned}
$$

