Solution to Homework 6

Haiyu Huang

November 17, 2018

Disclaimer: The solution may contain errors or typos so use at your own risk.

3.4

Problem. Find the upper and lower limits of the sequence $\{s_n\}$ defined by

$$s_1 = 0;$$
 $s_{2m} = \frac{s_{2m-1}}{2};$ $s_{2m+1} = \frac{1}{2} + s_{2m};$

Proof. $s_{2m+2} = \frac{s_{2m+1}}{2} = \frac{1}{4} + \frac{1}{2}s_{2m}$. With this recurrence, it can be shown by induction that $s_{2m} = 2^{-1} - 2^{-k}$. So it follows that

$$s_n = \begin{cases} 2^{-1} - 2^{-k} & n = 2k \\ 1 - 2^{-k} & n = 2k + 1 \end{cases}$$

Now it is easy to see that $\limsup_{n\to\infty} s_n = \lim_{k\to\infty} s_{2k+1} = 1$ and $\liminf_{n\to\infty} s_n = \lim_{k\to\infty} s_{2k} = 2^{-1}$.

3.5

Problem. For any two real sequences $\{a_n\}, \{b_n\}$, prove that

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n,$$

provided the sum on the right is not of the form $\infty - \infty$.

Proof. If either $\limsup a_n = \infty$ or $\limsup b_n = \infty$, there is nothing to prove. So assume $\limsup a_n < \infty$ and $\limsup b_n < \infty$. Let $\epsilon > 0$. There exists $N_1 > 0$ such that $a_n < \limsup a_n + \frac{\epsilon}{2}$ for all $n \ge N_1$ and there exists $N_2 > 0$ such that $b_n < \limsup b_n + \frac{\epsilon}{2}$ for all $n \ge N_2$. So for $n \ge N = \max(N_1, N_2)$, $a_n + b_n \le \limsup a_n + \limsup b_n + \epsilon$. Therefore, $\limsup \sup(a_n + b_n) \le \limsup a_n + \limsup b_n$. Alternatively, note that $\limsup a_{n \to \infty} x_n = \lim_{n \to \infty} \sup_{k \ge n} x_k = \inf_{n \ge 0} \sup_{m \ge n} x_m$. Fix n > 0. Observe that for all $m \ge n$

$$(a_m+b_m)\leq \sup_{m\geq n}a_m+\sup_{m\geq n}b_m.$$

Take the sup over all $m \ge n$,

$$\sup_{m\geq n}(a_m+b_m)\leq \sup_{m\geq n}a_m+\sup_{m\geq n}b_m.$$

Taking the limit as $n \rightarrow \infty$ (Why does the limit exists?),

$$\limsup_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} \sup_{m \ge n} (a_m + b_m) \le \lim_{n \to \infty} \sup_{m \ge n} a_m + \lim_{n \to \infty} \sup_{m \ge n} b_m = \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

3.6

Problem. *Investigate the behavior of* $\sum a_n$ *if*

- (a) $a_n = \sqrt{n+1} \sqrt{n};$
- (b) $a_n = \frac{\sqrt{n+1}-\sqrt{n}}{n};$

(c)
$$a_n = (\sqrt[n]{n} - 1)^n$$
;

(d)
$$a_n = \frac{1}{1+z^n}$$
, for $z \in \mathbb{C}$.

Proof. (a) The partial sum $s_n = \sqrt{n+1} - 1 \rightarrow \infty$ so $\sum a_n$ diverges.

- (b) $a_n = \frac{\sqrt{n+1}-\sqrt{n}}{n} \cdot \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}} = \frac{1}{n(\sqrt{n+1}+\sqrt{n})} \le \frac{1}{2n^{3/2}}$, which converges as a *p*-series with p = 3/2 > 1. So $\sum a_n$ converges by comparison test.
- (c) $\limsup \sqrt[n]{a_n} = \lim(\sqrt[n]{n-1}) = 0 < 1$, so the series converges by root test.
- (d) If |z| > 1, then

$$\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \limsup_{n \to \infty} \left| \frac{1+z^n}{1+z^{n+1}} \right| = \limsup_{n \to \infty} \left| \frac{z^{-n}+1}{z^{-n}+z} \right| = \frac{1}{|z|} < 1,$$

where $\limsup |z^{-n}| = \lim |z|^{-n} \to 0$ as |z| > 1. So $\sum a_n$ converges by ratio test. If $|z| \le 1$, then by triangle inequality

$$|a_n| = \frac{1}{|1+z^n|} \ge \frac{1}{1+|z|^n} \ge \frac{1}{2}.$$

Since $a_n \not\rightarrow 0$, $\sum a_n$ diverges.

3.7

Problem. Prove that the convergence of $\sum a_n$ implies the convergences of $\sum \frac{\sqrt{a_n}}{n}$ if $a_n \ge 0$.

Proof. By Cauchy Schwarz inequality,

$$\sum \frac{\sqrt{a_n}}{n} \le \left(\sum a_n\right)^{1/2} \cdot \left(\sum \frac{1}{n^2}\right)^{1/2},$$

which is the product of two convergent series.

Problem 2

Assume that the series $\sum_{n=1}^{\infty} a_n^2$ converges. Prove that $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges.

Proof. Let $b_n = a_n^2 \ge 0$. By the previous problem, $\sum a_n^2 = \sum b_n$ converges implies that $\sum \frac{\sqrt{b_n}}{n} = \sum \frac{|a_n|}{n}$ converges. So $\sum \frac{a_n}{n}$ converges.

3.8

Problem. If $\sum a_n$ converges, and if $\{b_n\}$ is monotonic and bounded, prove that $\sum a_n b_n$ converges.

Proof. Let $A_n = \sum_{k=1}^n a_k (A_0 = 0)$, so that $a_n = A_n - A_{n-1}$ for $n = 1, 2, \dots$. A_n converges implies A_n is bounded. Let M be an upper bound for A_n . $\{b_n\}$ is monotonic and bounded implies the convergence of $\{b_n\}$. Since $\{b_n\}$ and $\{A_n\}$ converges, the product $\{b_nA_n\}$ also converges. In particular both $\{b_n\}$ and $\{b_nA_n\}$ are Cauchy sequences. Let $\epsilon > 0$. Choose N sufficiently large so that the following inequalities hold $\forall m, n \ge N$:

$$|b_n A_n - b_m A_m| < \frac{\epsilon}{2}; \qquad |b_m - b_n| < \frac{\epsilon}{2M}.$$

Then if $n > m \ge N$, by Abel's summation by parts formula

$$\sum_{k=m+1}^{n} a_k b_k = b_n A_n - b_m A_m + \sum_{k=m}^{n-1} (b_k - b_{k+1}) A_k.$$

Since the sequence $\{b_k\}$ is monotonic, we have

$$\left|\sum_{k=m}^{n-1} (b_k - b_{k+1}) A_k\right| \le M \sum_{k=m}^{n-1} |b_k - b_{k+1}| = M \left|\sum_{k=m}^{n-1} (b_k - b_{k+1})\right| = M |b_m - b_n| < M \cdot \frac{\epsilon}{2M} = \frac{\epsilon}{2}$$

Therefore,

$$\left|\sum_{k=m+1}^{n} a_k b_k\right| \le |b_n A_n - b_m A_m| + \left|\sum_{k=m}^{n-1} (b_k - b_{k+1}) A_k\right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Hence $\sum a_n b_n$ is Cauchy and thus converges by Cauchy criterion.

3.14

Problem. If $\{s_n\}$ is a complex sequence, define its arithmetic mean σ_n by

$$\sigma_n = \frac{s_0 + s_1 + \dots + s_n}{n+1}$$
 $(n = 0, 1, 2, \dots).$

- (a) If $\lim s_n = s$, prove that $\lim \sigma_n = s$.
- (b) Construct a sequence $\{s_n\}$ which does not converge, although $\lim \sigma_n = 0$.
- (c) Can it happen that $s_n > 0$ for all n and that $\limsup s_n = \infty$, although $\lim \sigma_n = 0$.
- (d) Put $a_n = s_n s_{n-1}$, for $n \ge 1$. Show that $s_n \sigma_n = \frac{1}{n+1} \sum_{k=1}^n k a_k$. Assume $\lim(na_n) = 0$ and that $\{\sigma_n\}$ converges. Prove that $\{s_n\}$ converges.

Proof. (a) Let $\epsilon > 0$. Let $t_k = s_k - s$.

$$\begin{aligned} |\sigma_n - s| &= \left| \frac{s_0 + s_1 + \dots + s_n}{n+1} - s \right| \\ &= \left| \frac{(s_0 - s) + (s_1 - s) + \dots + (s_n - s)}{n+1} \right| \\ &= \left| \frac{t_0 + t_1 + \dots + t_n}{n+1} \right|. \end{aligned}$$

Since $\lim s_n = s$, $\exists N > 0$ such that $|t_n| < \epsilon$ if $n \ge N$. Now

$$\begin{split} |\sigma_n - s| &= \Big| \frac{t_0 + t_1 + \dots + t_n}{n+1} \Big| \\ &= \Big| \frac{t_0 + t_1 + \dots + t_N}{n+1} + \frac{t_{N+1} + \dots + t_n}{n+1} \Big| \\ &\leq \frac{|t_0| + |t_1| + \dots + |t_N|}{n+1} + \frac{|t_{N+1}| + \dots + |t_n|}{n+1} \end{split}$$

Note that

$$\frac{|t_{N+1}|+\dots+|t_n|}{n+1} < \frac{n-N}{n+1} \cdot \epsilon < \epsilon$$

Moreover, by Archimedean property of \mathbb{R} , $\exists N'$ such that $\frac{|t_0|+|t_1|+\cdots+|t_N|}{N'+1} < \epsilon$. Now if $n \ge \max\{N, N'\}$, then

$$|\sigma_n - s| \le \frac{|t_0| + |t_1| + \dots + |t_N|}{n+1} + \frac{|t_{N+1}| + \dots + |t_n|}{n+1} < 2\epsilon$$

Hence $\lim \sigma_n = s$.

(b) Let $s_n = (-1)^n$. Then $\sigma_n = 0$ if *n* is odd and $\sigma_n = \frac{1}{n+1}$ if *n* is even. Thus $\sigma_n \to 0$ even though s_n does not converge.

(c) Heuristically, we need to construct a positive sequence $\{s_n\}$ with a subsequence goes to infinity, but $\frac{\sum_{k=0}^n s_k}{n+1} \to 0$. For example, this can be achieved if $\sum s_n$ grows slower than \sqrt{n} with a subsequence grows as $n^{1/4}$. Let $s_n = \begin{cases} k & n = k^4 \\ \frac{1}{n^2} & n \neq k^4 \end{cases}$. The for $k^4 \le n < (k+1)^4$,

$$\sigma_n \leq \frac{1}{n+1} \sum_{m=1}^n \frac{1}{m^2} + \frac{1}{n+1} \sum_{m=1}^k \frac{1}{m}$$
$$= \frac{1}{n+1} \sum_{m=1}^n \frac{1}{m^2} + \frac{1}{n+1} \cdot \frac{k(k+1)}{2}.$$

The first $\frac{1}{n+1}\sum_{m=1}^{n}\frac{1}{m^2}$ goes to 0 by part (a) and for the second term, $\frac{1}{n+1} \cdot \frac{k(k+1)}{2} \le \frac{1}{k^4} \cdot \frac{k(k+1)}{2} \le \frac{1}{2k^2} \to 0$ as $k \to \infty$. As $n \to \infty$, $k \to \infty$ since $(k+1)^4 > n$. Therefore, $\sigma_n \to 0$ as $n \to \infty$ whereas $s_{n=k^4} = n^{1/4} \to \infty$.

(d) Let $a_0 = s_0$ so that

$$s_n - \sigma_n = \frac{(n+1)s_n - \sum_{k=0}^n s_k}{n+1}$$

= $\frac{(ns_n - ns_{n-1}) + ((n-1)s_{n-1} - (n-1)s_{n-2}) + \dots + (s_1 - s_0)}{n+1}$
= $\frac{1}{n+1} \sum_{k=1}^n ka_k.$

If $na_n \to 0$, then by part (a) the average of $na_n \to 0$, which is the right hand side of the above equation. Therefore $s_n - \sigma_n \to 0$ and so s_n converges.

Problem 1

Let $f : \mathbb{N} \to \mathbb{R}$ and $||f|| = (\sum_{n=1}^{\infty} |f(n)|^2)^{1/2}$. Define Let $l^2 = \{f : \mathbb{N} \to \mathbb{R} : ||f|| < \infty\}$. For two sequences $f, g \in l^2$, define d(f, g) = ||f - g||.

- (i) Show that the distance is well-defined and that l^2 with this distance is a metric space;
- (ii) For each $j \ge 1$, consider the sequence e_j whose terms are all equal to 0 except for the *j*th term which is 1. Show that for each $j \ge 1$, e_j is an element in l^2 and show that the sequence $\{e_j\}_{j\ge 1}$ is not Cauchy in l^2 ;
- (iii) In the metric space consider the closed unit ball of center the zero sequence $K = \{f \in l^2 : ||f|| \le 1\}$. Show that *K* is closed and bounded but not compact by exhibiting a sequence in *K* that does not have a convergent subsequence.
- *Proof.* (i) To show the distance function is well-defined, it suffices to show $f + g \in l^2$ for $f, g \in l^2$. Observe that

$$|f+g|^2 \le (|f|+|g|)^2 \le (2\max(|f|,|g|))^2 \le 4(|f|^2+|g|^2).$$

It is clear that d(f, f) = 0, d(f, g) > 0 if $f \neq g$, and d(f, g) = d(g, f) for $f, g \in l^2$. For triangle inequality, note that $|f + g|^2 \le (|f| + |g|)|f + g| = |f||f + g| + |g||f + g|$. By Cauchy Schwarz inequality,

$$\begin{split} \sum_{n=1}^{\infty} |f(n) + g(n)|^2 &\leq \sum_{n=1}^{\infty} |f(n)| |f(n) + g(n)| + \sum_{n=1}^{\infty} |g(n)| |f(n) + g(n)| \\ &\leq \left(\sum_{n=1}^{\infty} |f(n)|^2 \right)^{1/2} \left(\sum_{n=1}^{\infty} |f(n) + g(n)|^2 \right)^{1/2} + \left(\sum_{n=1}^{\infty} |g(n)|^2 \right)^{1/2} \left(\sum_{n=1}^{\infty} |f(n) + g(n)|^2 \right)^{1/2} \\ &= \left(||f|| + ||g|| \right) \left(\sum_{n=1}^{\infty} |f(n) + g(n)|^2 \right)^{1/2}. \end{split}$$

Therefore, $||f + g|| = \left(\sum_{n=1}^{\infty} |f(n) + g(n)|^2\right)^{1/2} \le ||f|| + ||g||.$

- (ii) For each $j \ge 1$, $||e_j|| = 1$ so $e_j \in l^2$. $\{e_j\}_{j\ge 1} \in l^2$ is not Cauchy because $||e_i e_j|| = \sqrt{2}$ for all $i \ne j$.
- (iii) *K* is bounded by definition. Let $f_n \in l^2$ and suppose $f_n \to f$. Let $\epsilon > 0$. Then there exists *N* such that $||f_n f|| < \epsilon$ for $n \ge N$. So $||f|| \le ||f f_N|| + ||f_N|| < \epsilon + 1$. Hence $||f|| \le 1$ and $f \in l^2$. This shows that *K* is closed. Observe $\{e_j\}_{j\ge 1}$ defined in part (ii) is a sequence in *K*, which does not have a convergent subsequence for the same reason that $||e_i e_j|| = \sqrt{2}$ for all $i \ne j$.

Problem 3

Let $\{a_n\}$ be a sequence of monotonically decreasing positive numbers with the property that $a_n \ge 10a_{2n}$ for all $n \in \mathbb{N}$. Prove that $\sum_{n=1}^{\infty} a_n$ converges.

Proof. Note that $a_{2^n} \le 10^{-1} a_{2^{n-1}} \le 10^{-n} a_1$ and for all $2^k \le n < 2^{k+1}$, $a_{2^k} \ge a_n$ since a_n is monotonically decreasing.

$$\sum_{n=1}^{\infty} a_n = a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \cdots$$

$$\leq a_1 + (a_2 + a_2) + (a_4 + a_4 + a_4 + a_4) + \cdots$$

$$= a_1 + 2a_2 + 4a_4 + 8a_8 + \cdots$$

$$\leq a_1 + \frac{2}{10}a_1 + \frac{2^2}{10^2}a_1 + \frac{2^3}{10^3}a_1 + \cdots$$

$$= a_1 \sum_{k=0}^{\infty} \left(\frac{1}{5}\right)^k$$

$$= \frac{5}{4}a_1$$

$$\leq \infty.$$

6