Solution to Homework 7

Yingjia Fu

November 29, 2018

3.9

Problem. Find the radius of convergence of each of the following power series:
(a) $\sum n^{3} z^{n}$,
(b) $\sum \frac{2^{n}}{n!} z^{n}$,
(c) $\sum \frac{2^{n}}{n^{2}} z^{n}$,
(d) $\sum \frac{n^{3}}{3^{n}} z^{n}$.

Solution. (a) Let $a_{n}=n^{3}$. $\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=1$ implies that the radius of convergence is 1 .
(b) Let $a_{n}=\frac{2^{n}}{n!} \cdot \lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=\frac{n+1}{2}=\infty$ implies that the radius of convergence is infinite.
(c) Let $a_{n}=\frac{2^{n}}{n^{2}} . \lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{2 n^{2}}$ implies that the radius of convergence is $\frac{1}{2}$.
(d) Let $a_{n}=\frac{n^{3}}{3^{n}}$. $\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=\lim _{n \rightarrow \infty} 3\left(\frac{n}{n+1}\right)^{3}=3$ implies that the radius of convergence is 3 .

3.10

Problem. Suppose that the coefficients of the power series $\sum a_{n} z^{n}$ are integers, infinitely many of which are distinct from zero. Prove that the radius of convergence is at most 1.
Proof. Notice that when $|z|>1, a_{n}$ does not converge to zero since infinitely many terms are nonzero, which implies the series diverges. Thus, the radius of convergence is at most 1.

3.11

(a)

Proof. First, if $\left\{a_{n}\right\}$ is unbounded, then $\frac{a_{n}}{1+a_{n}}$ does not converge to zero as $n \rightarrow \infty$, which implies the series diverges.
Next, if $\left\{a_{n}\right\}$ is upper bounded by some $M>0$, then

$$
\frac{a_{n}}{1+a_{n}} \geq \frac{a_{n}}{1+M}
$$

By comparison test, we have the series is divergence.
(b)

Proof. Notice s_{n} is strictly increasing as n goes up. For $k \geq 1$, we have

$$
\begin{aligned}
\frac{a_{N+1}}{s_{N+1}}+\ldots \frac{a_{N+k}}{s_{N+k}} & \geq \frac{a_{N+1}+\cdots+a_{N+k}}{s_{N+k}} \\
& =\frac{s_{N+k}-s_{N}}{s_{N+k}} \\
& =1-\frac{s_{N}}{s_{N+k}}
\end{aligned}
$$

Since S_{n} goes to ∞ as $n \rightarrow \infty$, for any N, we can find k large enough such that $1-\frac{s_{N}}{s_{N+k}}>\frac{1}{2}$, which implies the partial sums of the series $\sum \frac{a_{n}}{s_{n}}$ is not a Cauchy sequence. It follows that the series diverges.
(c)

Proof. Notice that for $n \geq 2$,

$$
\begin{aligned}
\frac{a_{n}}{s_{n}^{2}} & \leq \frac{a_{n}}{s_{n} s_{n-1}} \\
& =\frac{1}{s_{n-1}}-\frac{1}{s_{n}}
\end{aligned}
$$

Thus,

$$
\sum \frac{a_{n}}{s_{n}^{2}} \leq \sum_{n=2}^{\infty} \frac{1}{s_{n-1}}-\frac{1}{s_{n}}=\frac{1}{a_{1}} .
$$

(d) $\sum \frac{a_{n}}{1+n a_{n}}$ can be either convergent or divergent.

- If $\left\{n a_{n}\right\}$ is bounded above, it converges.
- If $a_{n}=\frac{1}{n(\log (n))^{p}}$, then $\sum \frac{a_{n}}{1+n a_{n}}=\sum \frac{1}{n(\log (n))^{p}+n}<\frac{1}{n(\log (n))^{p}}$, which implies $\sum \frac{a_{n}}{1+n a_{n}}$ converges.

For the second series, notice

$$
\sum \frac{a_{n}}{1+n^{2} a_{n}}=\sum \frac{1}{\frac{1}{a_{n}}+n^{2}} \leq \sum \frac{1}{n^{2}}
$$

It follows that $\sum \frac{a_{n}}{1+n^{2} a_{n}}$ converges.

3.13

Problem. Prove that the Cauchy product of two absolutely convergent series converges absolutely.
Proof. Let $S_{n}=\sum_{k=0}^{n} a_{n}, T_{n}=\sum_{k=0}^{n} b_{n}$ and $U_{n}=\sum_{k=0}^{n} \sum_{l=0}^{k} a_{l} b_{k-l}$. Let $\lim _{n \rightarrow \infty} S_{n}=S$ and $\lim _{n \rightarrow \infty} T_{n}=T$. Since $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two absolutely convergent series, we can assume witout lost of generalization that $a_{n}, b_{n} \geq 0$ for all $n \in \mathbb{N}$. Assume $a_{-1}=T_{-1}=0$. We have

$$
\begin{aligned}
U_{n} & =\sum_{k=0}^{n} \sum_{l=0}^{k} a_{l} b_{k-l} \\
& =\sum_{k=0}^{n} \sum_{l=0}^{k} a_{l}\left(T_{k-l}-T_{k-l-1}\right) \\
& =\sum_{k=0}^{n} \sum_{j=0}^{k} a_{k-j}\left(T_{j}-T_{j-1}\right) \\
& =\sum_{k=0}^{n} \sum_{j=0}^{k}\left(a_{k-j}-a_{k-j-1}\right) T_{j} \\
& =\sum_{j=0}^{n} \sum_{k=j}^{n}\left(a_{k-j}-a_{k-j-1}\right) T_{j} \\
& =\sum_{j=0}^{n} a_{n-j} T_{j} \\
& \leq T \sum_{m=0}^{n} a_{m} \\
& =T S_{n} \leq T S .
\end{aligned}
$$

Thus, we have shown that U_{n} is bounded above which implies the increasing sequence U_{n} converges.

