Solution to Homework 8

Haiyu Huang

December 4, 2018

Disclaimer: The solution may contain errors or typos so use at your own risk.

Problem. Assume $f: X \to Y$ is Lipschitz continuous, i.e. there exists $C \ge 0$ such that

 $d_Y(f(p), f(q)) \le C d_X(p, q)$

for all $p, q \in X$. Prove that f is uniformly continuous.

Proof. For all $\epsilon > 0$, let $\delta = \frac{\epsilon}{C}$. Then $d_Y(f(p), f(q)) \le Cd_X(p, q) < \epsilon$ whenever $d_X(p, q) < \delta$.

4.2

Problem. If f is a continuous mapping of a metric space X into a metric space Y, prove that

 $f(\overline{E}) \subset \overline{f(E)}$

for every set $E \subset X$. Show, by an example, that $f(\overline{E})$ can be a proper subset of $\overline{f(E)}$.

Proof. $f(E) \subset \overline{f(E)}$, so $E \subset f^{-1}(f(E)) \subset f^{-1}(\overline{f(E)})$. Since $\overline{f(E)}$ is closed and f is continuous, $f^{-1}(\overline{f(E)})$ is closed so $\overline{E} \subset f^{-1}(\overline{f(E)})$. Hence $f(\overline{E}) \subset \overline{f(E)}$.

You can choose any continuous function on the real line that approaches a value at infinity. For example, let $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{1}{1+x^2}$ and $E = [0,\infty)$. Then $f(\overline{E}) = f(E) = (0,1]$, but $\overline{f(E)} = [0,1]$.

Remark. The converse is also true: if $f(\overline{E}) \subset \overline{f(E)}$ for every $E \subset X$, then f is continuous. Try to prove it.

4.3

Problem. Let f be a continuous real function on a metric space X. Let Z(f) be the set of all $p \in X$ at which f(p) = 0. Prove that Z(f) is closed.

Proof. {0} is closed in \mathbb{R} so $Z(f) = f^{-1}(\{0\})$ is closed by the continuity of f.

4.4

Problem. Let f and g be continuous mappings of a metric space X into a metric space Y, and let E be a dense subset of X. Prove that f(E) is dense in f(X). If g(p) = f(p) for all $p \in E$, prove that g(p) = f(p) for all $p \in X$.

Proof. By Problem 4.2, $f(X) = f(\overline{E}) \subset \overline{f(E)}$. So $f(X) = \overline{f(E)}$. Define $\psi : X \to \mathbb{R}$ by $\psi(p) = d_Y(f(p), g(p))$. The zero set of ψ , $Z(\psi) = \{p \in X : \psi(p) = 0\} = \{p \in X : f(p) = g(p)\} \supset E$. ψ is continuous: Let $\epsilon > 0$, there exists $\delta_1 > 0$ such that $|p - q| < \delta_1 \implies |f(p) - f(q)| < \frac{\epsilon}{2}$, and there exists $\delta_2 > 0$ such that $|p - q| < \delta_2 \implies |g(p) - g(q)| < \frac{\epsilon}{2}$. Let $\delta = \min\{\delta_1, \delta_2\}$. If $|p - q| < \delta$,

$$|\psi(p) - \psi(q)| = \left| d_Y(f(p), g(p)) - d_Y(f(q), g(q)) \right| \le d_Y(f(p), f(q)) + d_Y(g(p), g(q)) < \epsilon.$$

Hence ψ is continuous and $Z(\psi)$ is closed. Since $E \subset Z(\psi)$, $X = \overline{E} \subset Z(\psi)$, i.e. g(p) = f(p) for all $p \in X$.

4.8

Problem. Let f be a real uniformly continuous function on the bounded set E in \mathbb{R} . Prove that f is bounded on E. Show that the conclusion is false if boundedness of E is omitted from the hypothesis.

Proof. Since *E* is bounded, we would like to take the closure of *E* so that *E* is compact. To use the image of \overline{E} under *f* is compact, we have to define *f* on the limit points.

Lemma (Continuous Extension). Let X be a metric space and $E \subset X$. If $f : E \to \mathbb{R}$ is uniformly continuous, then there exists a unique continuous extension $\tilde{f} : \overline{E} \to \mathbb{R}$ such that $\tilde{f}|_E = f$.

Proof. For $x \in \overline{E}$, let x_n be any sequence in E converging to x. In particular, $\{x_n\}_{n\geq 1}$ is Cauchy. Since f is uniformly continuous, $\{f(x_n)\}_{n\geq 1}$ is Cauchy in \mathbb{R} (Verify that uniformly continuous function takes Cauchy sequence to Cauchy sequence). Since \mathbb{R} is complete, $f(x_n)$ converges so define $\tilde{f}: \overline{E} \to \mathbb{R}$ by $\tilde{f}(x) = \lim f(x_n)$ for any sequence $\{x_n\} \subset E$ converging to x. First we have to show \tilde{f} is well-defined. Suppose $x_n \to x$ and $y_n \to x$. Let $\epsilon > 0$. We would like to show $|f(x_n) - f(y_n)| < \epsilon$ for n sufficiently large, i.e. $\lim f(x_n) = \lim f(y_n)$. Since f is uniformly continuous, there exists $\delta > 0$ such that $d_X(x, y) < \delta \implies |f(x) - f(y)| < \epsilon$. Since $x_n \to x$ and $y_n \to x$, there exists N such that $d_X(x_n, y_n) < \delta$ for all $n \ge N$. Hence for any ϵ , there exists N such that $|f(x_n) - f(y_n)| < \epsilon$ for $n \ge N$. It follows that $\lim f(x_n) - f(y_n) = 0$, or $\lim f(x_n) = \lim f(y_n)$. Therefore \tilde{f} is well-defined. For $x \in E$, we can choose the constant sequence x, x, x, \cdots converging to x so that $\tilde{f}(x) = \lim f(x) = f(x)$. This shows that \tilde{f} is an extension of f, i.e. $\tilde{f}|_E = f$. The continuity of f follows from definition. The uniqueness follows from the fact that a continuous mapping is determined by its values on a dense subset of its domain (Problem 4.4).

With this lemma, the problem becomes quite trivial. We have an extension $\tilde{f} : \overline{E} \to \mathbb{R}$. \overline{E} is compact by Heine Borel so $\tilde{f}(\overline{E})$ is compact and hence bounded. Finally observe that $f(E) \subset \tilde{f}(\overline{E})$. Note that $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto x$ is a unbounded uniformly continuous function.

Remark. Note that the above continuous extension lemma can be generalized by taking the codomain to be any complete metric space *Y*.

4.14

Problem. Let I = [0,1] be the closed unit interval. Suppose f is a continuous mapping of I into I. Prove that f(x) = x for at least one $x \in I$.

Proof. Consider the continuous function g(x) = f(x) - x. g(0) = f(0) and g(1) = f(1) - 1. If f(0) = 0 or f(1) = 1, we are done; otherwise g(0) > 0 > g(1). By the intermediate value theorem, there exists $x \in (0, 1)$ such that g(x) = 0, or f(x) = x.

4.20

Problem. If *E* is a nonempty subset of a metric space *X*, define the distance from $x \in X$ to *E* by $\rho_E(x) = \inf_{z \in E} d(x, z)$.

- (a) Prove that $\rho_E(x) = 0$ iff $x \in \overline{E}$.
- (b) Prove that ρ_E is a uniformly continuous function on X, by showing that

$$|\rho_E(x) - \rho_E(y)| \le d(x, y).$$

- *Proof.* (a) $\rho_E(x) = 0$ iff there exists $\{x_n\}_{n \ge 1}$ a sequence in *E* such that $d(x, x_n) \to 0$ as $n \to \infty$ iff there exists $\{x_n\}_{n \ge 1}$ a sequence in *E* such that $x_n \to x$ iff $x \in \overline{E}$.
- (b) For any $z \in E$, $\rho_E(x) \le d(x, z) \le d(x, y) + d(y, z)$. So

$$\rho_E(x) - d(x, y) \le d(y, z)$$

for all $z \in E$. Take the infimum over $z \in E$, we have $\rho_E(x) - d(x, y) \le \rho_E(y)$. So $\rho_E(x) - \rho_E(y) \le d(x, y)$. By symmetry, $|\rho_E(x) - \rho_E(y)| \le d(x, y)$. So ρ_E is uniformly continuous by the first homework problem taking C = 1.

4.21

Problem. Suppose K and F are disjoint sets in a metric space X, K is compact, F is closed. Prove that there exists $\delta > 0$ such that $d(p,q) > \delta$ if $p \in K, q \in F$. Show that the conclusion may fail for two disjoint closed sets if neither is compact.

Proof. Consider the function ρ_F . $\rho_F(x) = 0$ iff $x \in \overline{F} = F$ by the previous problem so ρ_F is positive on $X \setminus F$. In particular, ρ_F is a positive continuous function on K. Since K is compact, $\rho_F(K)$ is compact and so attains a minimum in $(0,\infty)$, i.e. there exists $m \in K$ such that $0 < \rho_F(m) \le \rho_F(k)$ for all $k \in K$. Take $\delta > 0$ to be any number less than $\rho_F(m)$. Then for all $p \in K, q \in F$, $d(p,q) \ge \rho_F(p) \ge \rho_F(m) > \delta$. If neither is compact, we can take subsets of \mathbb{R}^2 , $K = \{(x,0) : x \in \mathbb{R}\}$ and $F = \{(x, y) : xy = 1\}$. K and F are closed, but $y \to 0$ as x approaches infinity in F.