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Disclaimer: The solution may contain errors or typos so use at your own risk.

Problem. Assume f : X → Y is Lipschitz continuous, i.e. there exists C ≥ 0 such that

dY ( f (p), f (q)) ≤C dX (p, q)

for all p, q ∈ X . Prove that f is uniformly continuous.

Proof. For all ε> 0, let δ= ε
C . Then dY ( f (p), f (q)) ≤C dX (p, q) < ε whenever dX (p, q) < δ. ■

4.2

Problem. If f is a continuous mapping of a metric space X into a metric space Y , prove that

f (E) ⊂ f (E)

for every set E ⊂ X . Show, by an example, that f (E) can be a proper subset of f (E).

Proof. f (E) ⊂ f (E), so E ⊂ f −1
(

f (E)
) ⊂ f −1

(
f (E)

)
. Since f (E) is closed and f is continuous,

f −1
(

f (E)
)

is closed so E ⊂ f −1
(

f (E)
)
. Hence f (E) ⊂ f (E).

You can choose any continuous function on the real line that approaches a value at infinity. For
example, let f : R→ R defined by f (x) = 1

1+x2 and E = [0,∞). Then f (E) = f (E) = (0,1], but

f (E) = [0,1].

Remark. The converse is also true: if f (E) ⊂ f (E) for every E ⊂ X , then f is continuous. Try to
prove it.

■

4.3

Problem. Let f be a continuous real function on a metric space X . Let Z ( f ) be the set of all p ∈ X
at which f (p) = 0. Prove that Z ( f ) is closed.

Proof. {0} is closed in R so Z ( f ) = f −1({0}) is closed by the continuity of f . ■
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4.4

Problem. Let f and g be continuous mappings of a metric space X into a metric space Y , and let
E be a dense subset of X . Prove that f (E) is dense in f (X ). If g (p) = f (p) for all p ∈ E, prove that
g (p) = f (p) for all p ∈ X .

Proof. By Problem 4.2, f (X ) = f (E) ⊂ f (E). So f (X ) = f (E). Define ψ : X → R by ψ(p) =
dY ( f (p), g (p)). The zero set of ψ, Z (ψ) = {p ∈ X : ψ(p) = 0} = {p ∈ X : f (p) = g (p)} ⊃ E . ψ is
continuous: Let ε> 0, there exists δ1 > 0 such that |p −q| < δ1 =⇒ | f (p)− f (q)| < ε

2 , and there
exists δ2 > 0 such that |p −q| < δ2 =⇒ |g (p)− g (q)| < ε

2 . Let δ= min{δ1,δ2}. If |p −q| < δ,

|ψ(p)−ψ(q)| = ∣∣dY ( f (p), g (p))−dY ( f (q), g (q))
∣∣≤ dY ( f (p), f (q))+dY (g (p), g (q)) < ε.

Hence ψ is continuous and Z (ψ) is closed. Since E ⊂ Z (ψ), X = E ⊂ Z (ψ), i.e. g (p) = f (p) for all
p ∈ X . ■

4.8

Problem. Let f be a real uniformly continuous function on the bounded set E in R. Prove that
f is bounded on E. Show that the conclusion is false if boundedness of E is omitted from the
hypothesis.

Proof. Since E is bounded, we would like to take the closure of E so that E is compact. To use
the image of E under f is compact, we have to define f on the limit points.

Lemma (Continuous Extension). Let X be a metric space and E ⊂ X . If f : E → R is uniformly
continuous, then there exists a unique continuous extension f̃ : E →R such that f̃ |E = f .

Proof. For x ∈ E , let xn be any sequence in E converging to x. In particular, {xn}n≥1 is Cauchy.
Since f is uniformly continuous, { f (xn)}n≥1 is Cauchy in R (Verify that uniformly continuous
function takes Cauchy sequence to Cauchy sequence). Since R is complete, f (xn) converges so
define f̃ : E →R by f̃ (x) = lim f (xn) for any sequence {xn} ⊂ E converging to x. First we have to
show f̃ is well-defined. Suppose xn → x and yn → x. Let ε> 0. We would like to show | f (xn)−
f (yn)| < ε for n sufficiently large, i.e. lim f (xn) = lim f (yn). Since f is uniformly continuous,
there exists δ > 0 such that dX (x, y) < δ =⇒ | f (x)− f (y)| < ε. Since xn → x and yn → x, there
exists N such that dX (xn , yn) < δ for all n ≥ N . Hence for any ε, there exists N such that | f (xn)−
f (yn)| < ε for n ≥ N . It follows that lim f (xn)− f (yn) = 0, or lim f (xn) = lim f (yn). Therefore f̃
is well-defined. For x ∈ E , we can choose the constant sequence x, x, x, · · · converging to x so
that f̃ (x) = lim f (x) = f (x). This shows that f̃ is an extension of f , i.e. f̃ |E = f . The continuity
of f follows from definition. The uniqueness follows from the fact that a continuous mapping
is determined by its values on a dense subset of its domain (Problem 4.4). ■
With this lemma, the problem becomes quite trivial. We have an extension f̃ : E → R. E is
compact by Heine Borel so f̃ (E) is compact and hence bounded. Finally observe that f (E) ⊂
f̃ (E). Note that f :R→R, x 7→ x is a unbounded uniformly continuous function.
Remark. Note that the above continuous extension lemma can be generalized by taking the
codomain to be any complete metric space Y .

■

2



Haiyu Huang

4.14

Problem. Let I = [0,1] be the closed unit interval. Suppose f is a continuous mapping of I into
I . Prove that f (x) = x for at least one x ∈ I .

Proof. Consider the continuous function g (x) = f (x)− x. g (0) = f (0) and g (1) = f (1)− 1. If
f (0) = 0 or f (1) = 1, we are done; otherwise g (0) > 0 > g (1). By the intermediate value theorem,
there exists x ∈ (0,1) such that g (x) = 0, or f (x) = x. ■

4.20

Problem. If E is a nonempty subset of a metric space X , define the distance from x ∈ X to E by
ρE (x) = infz∈E d(x, z).

(a) Prove that ρE (x) = 0 iff x ∈ E.

(b) Prove that ρE is a uniformly continuous function on X , by showing that

|ρE (x)−ρE (y)| ≤ d(x, y).

Proof. (a) ρE (x) = 0 iff there exists {xn}n≥1 a sequence in E such that d(x, xn) → 0 as n →∞ iff
there exists {xn}n≥1 a sequence in E such that xn → x iff x ∈ E .

(b) For any z ∈ E , ρE (x) ≤ d(x, z) ≤ d(x, y)+d(y, z). So

ρE (x)−d(x, y) ≤ d(y, z)

for all z ∈ E . Take the infimum over z ∈ E , we have ρE (x)−d(x, y) ≤ ρE (y). So ρE (x)−ρE (y) ≤
d(x, y). By symmetry, |ρE (x)−ρE (y)| ≤ d(x, y). So ρE is uniformly continuous by the first
homework problem taking C = 1.

■

4.21

Problem. Suppose K and F are disjoint sets in a metric space X , K is compact, F is closed. Prove
that there exists δ> 0 such that d(p, q) > δ if p ∈ K , q ∈ F . Show that the conclusion may fail for
two disjoint closed sets if neither is compact.

Proof. Consider the functionρF . ρF (x) = 0 iff x ∈ F = F by the previous problem soρF is positive
on X \ F . In particular, ρF is a positive continuous function on K . Since K is compact, ρF (K )
is compact and so attains a minimum in (0,∞), i.e. there exists m ∈ K such that 0 < ρF (m) ≤
ρF (k) for all k ∈ K . Take δ > 0 to be any number less than ρF (m). Then for all p ∈ K , q ∈ F ,
d(p, q) ≥ ρF (p) ≥ ρF (m) > δ. If neither is compact, we can take subsets of R2, K = {(x,0) : x ∈R}
and F = {(x, y) : x y = 1}. K and F are closed, but y → 0 as x approaches infinity in F . ■
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