HOMEWORK #2 – SOLUTIONS

Solutions to Problem 1.2.1. a. False. Consider the interval \(I = (0.2, 0.3) \). Then there’s no element from \(\mathbb{Z} \) in \(I \), so \(\mathbb{Z} \) is not dense in \(\mathbb{R} \).

b. False. Consider the interval \(I = (-2, -1) \). Then \(I \cap (0, \infty) = \emptyset \).

c. Yes. Let \((a, b)\) be an arbitrary interval in \(\mathbb{R} \). Since \(\mathbb{Q} \) is dense in \(\mathbb{R} \), there exists \(q_0 \in \mathbb{Q} \) such that \(q_0 \in (a, b) \).

- If \(q_0 \notin \mathbb{N} \) then \(q_0 \in \mathbb{Q} \setminus \mathbb{N} \).
- If \(q_0 \in \mathbb{N} \) then \((q_0, q_0 + 1) \cap (a, b)\) contains no integer. Since \(\mathbb{Q} \) is dense in \(\mathbb{R} \), there exists \(q \in \mathbb{Q} \) such that \(q \in (q_0, q_0 + 1) \cap (a, b) \). From the remark above, \(q \) is not an integer, so \(q \in \mathbb{Q} \setminus \mathbb{N} \).

In both cases, we found a number \(q \in \mathbb{Q} \setminus \mathbb{N} \) such that \(q \in (a, b) \). This implies that \(\mathbb{Q} \setminus \mathbb{N} \) is dense in \(\mathbb{R} \).

Solutions to Problem 1.2.2. Let \(m = \inf S \).

Claim: \([m, m + 1]\) contains at least one element in \(S \).

Proof: Suppose that \([m, m + 1]\) doesn’t contain any element in \(S \), then \(m + 1 \leq a \) for all \(a \in S \). In other words, \(m + 1 \) is a lower bound, but this gives a contradiction since \(m \) is the greatest lower bound.

Let \(n \) be the element in \(S \cap [m, m + 1] \). Thus \(n < m + 1 \). Then, for any element \(k < n \), we have

\[
k \leq n - 1 < m.
\]

Since \(m \) is a lower bound, this implies that \(k \notin S \) for all \(k < n \). Therefore, \(n \) is a minimum of \(S \).

Solutions to Problem 1.2.3. Define \(a = \inf S \). Assume first that \(a \in S \). By the definition of the infimum, for any \(b \in S, a \leq b \). Therefore, \(a \) is the minimum of \(S \). Conversely, assume that \(m \) is the minimum of \(S \). Since \(m \in S \), so \(\inf S \leq m \). However, \(m \) is a lower bound of \(S \), so \(m \leq \inf S \). Therefore, we can conclude that \(m = \inf S \).

Solutions to Problem 1.2.5. Suppose for a contradiction that \(a > 0 \). Then, by the Archimedean Property, there exists some \(n_0 \in \mathbb{N} \) s.t. \(\frac{1}{n_0} < a \). But this contradicts the hypothesis \(a \leq \frac{1}{n} \) for every \(n \in \mathbb{N} \).

2nd Method. From the hypothesis on \(a \), we have that \(a \) is a lower bound for the set \(S := \{ \frac{1}{n} : n \in \mathbb{N} \} \). From Ex. 1.2.4(a), \(\inf(S) = 0 \). Since \(\inf(S) \) is the greatest lower bound of \(S \), we deduce that \(a \leq 0 \).

Solutions to Problem 1.2.6. Let \(b \in \mathbb{R} \) be an upper bound for \(S \). Suppose that \(b < a \). Since \(\mathbb{Q} \) is dense in \(\mathbb{R} \), then there exist \(c \in (b, a) \cap \mathbb{Q} \). Thus, \(c \in S \), which implies that \(b \) is not an upper bound of \(S \). This is in contradiction. So \(b \geq a \). This implies that \(\sup S \geq a \). On the other hand \(a \) is an upper bound of \(S \). This implies now that \(\sup S = a \).

Solutions to Problem 1.3.4. From Proposition 1.12, the fact that \(|x - a| < a/2 \) yields \(x > a - a/2 = a/2 \).

Solutions to Problem 1.3.7. By the triangle inequality

\[
|\langle a + b \rangle - b| \leq |a + b| + |b|
\]

\[
|a| \leq |a + b| + |b|
\]

\[
|a| - |b| \leq |a - b|.
\]

By switching between \(a \) and \(b \), we have

\[
|b| - |a| \leq |b - a| = |a - b|.
\]

Thus \(|a - b| \geq |a| - |b| \) and \(|a - b| \geq -(|a| - |b|) \). Therefore,

\[
|a - b| \geq ||a| - |b||.
\]

Solutions to Problem 1.3.9. Note that

\[
a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \ldots + ab^{n-2} + b^{n-1}).
\]

Because \(a^{n-1} + a^{n-2}b + \ldots + ab^{n-2} + b^{n-1} \geq 0 \), so \(a - b \leq 0 \) implies \(a^n - b^n \leq 0 \) and vice versa.
Problem 1.3.11. Using the Binomial Formula, we can write down:
\[(1 + b)^n = \sum_{k=0}^{n} \binom{n}{k} 1^{n-k} b^k \geq \binom{n}{0} b^0 + \binom{n}{1} b^1 = 1 + nb\]
where for the inequality, we kept from the sum (of nonnegative numbers) only the first two terms.

Problem 1.3.14. Since \((a - b)^2\) is always positive, we have
\[
0 \leq (a - b)^2 \\
0 \leq a^2 - 2ab + b^2 \\
2ab \leq a^2 + b^2 \\
ab \leq \frac{1}{2}(a^2 + b^2).
\]