Solution to Problem 2.1.1. a. False: let \(a_n = (-1)^n \). Then \(a_n^2 = 1 \) for all \(n \in \mathbb{N} \), so \(\{a_n^2\} \) converges but \(\{a_n\} \) doesn’t converge.

b. False: let \(a_n = (-1)^n \) and \(b_n = (-1)^{n+1} \). Then \(a_n + b_n = 0 \) for all \(n \in \mathbb{N} \), so \(\{a_n + b_n\} \) converges but \(\{a_n\} \) and \(\{b_n\} \) doesn’t converge.

c. True: since \(\{a_n\} \) converges, so \(\{-a_n\} \) converges. Because \(\{a_n + b_n\} \) and \(\{-a_n\} \) converge, we have \(\{a_n + b_n + (-a_n)\} = \{b_n\} \) converges.

d. False: let \(a_n = (-1)^n \). Then \(|a_n| = 1 \) for all \(n \in \mathbb{N} \), so \(\{|a_n|\} \) converges but \(\{a_n\} \) doesn’t converge.

Solution to Problem 2.1.2. a. Let \(\epsilon > 0 \) be arbitrary. We want to show that:

There exists \(N \in \mathbb{N} \) such that \(\left| \frac{1}{\sqrt{n}} - 0 \right| = \frac{1}{\sqrt{n}} < \epsilon \) for all \(n \geq N \).

By the Archimedean Property, there exists \(N \in \mathbb{N} \) such that \(\frac{1}{N} < \epsilon^2 \). This implies that \(\frac{1}{\sqrt{N}} < \epsilon \). Hence, for any \(n \geq N \), we have

\[
\frac{1}{\sqrt{n}} \leq \frac{1}{\sqrt{N}} < \epsilon \quad \text{for all } n \geq N
\]
as we wanted.

b. Let \(\epsilon > 0 \) be arbitrary. We want to show that:

There exists \(N \in \mathbb{N} \) such that \(\left| \frac{1}{n + 5} - 0 \right| = \frac{1}{n + 5} < \epsilon \) for all \(n \geq N \).

By the Archimedean Property, there exists \(N \in \mathbb{N} \) such that \(\frac{1}{N} < \epsilon \). This implies \(\frac{1}{N+5} < \frac{1}{N} < \epsilon \). Hence, for any \(n \geq N \), we have

\[
\frac{1}{n + 5} \leq \frac{1}{N + 5} < \epsilon \quad \text{for all } n \geq N,
\]
as desired.

Solution to Problem 2.1.6. Since \(a_n \to a \), for every \(\epsilon > 0 \) there is an index \(N \in \mathbb{N} \) starting from which \(a_n \in (a - \epsilon, a + \epsilon) \) (look at the comment and picture after the “Definition” on p.26). We are free to choose our epsilon to derive some further properties of \(\{a_n\} \). Here for example, we can choose \(\epsilon = \frac{\alpha}{2} \). So there is \(N \in \mathbb{N} \) s.t. \(a_n \in (\frac{\alpha}{2} - \epsilon, \frac{\alpha}{2} + \epsilon) \) for all \(n \geq N \). Since \(\frac{\alpha}{2} > 0, a_n > 0 \) for all \(n \geq N \).

Solution to Problem 2.1.7 Recall that the inequality stated in the comparison lemma doesn’t have to be true for all \(a_n \) and \(b_n \): we just need to find \(N_0 \in \mathbb{N} \) such that

\[|b_n - l| \leq |a_n - l| \text{ for all } n \geq N_0. \]

In this case, we take \(N_0 \) to be \(N \) from the problem. It follows that

\[|b_n - l| = |a_n - l| \text{ for all } n \geq N. \]

Since \(a_n \to l \), by the comparison lemma, we have \(b_n \to l \) as well.

Solution to Problem 2.1.8 Suppose \(\{c_n\} \) converges to \(c \). Since the constant sequence \(\{-c\} \) converges to \(-c \), Theorem 2.10 implies that \(\{c_n - c\} \) converges to \(c - c = 0 \). This proves the first part.

For the second part, suppose that \(\{c_n - c\} \) converges to 0. Again, we notice that since the constant sequence \(\{c\} \) converges to \(c \), we obtain using Theorem 2.10 that \(\{(c_n - c) + c\} \) converges to \(c \). This proves the second part.
Solution to Problem 2.1.12 We will prove this by induction. The base case is true since $|1 - \sqrt{2}| < 2$. Now assume that $|a_n - \sqrt{2}| < \frac{2}{n}$. Then $-\frac{2}{n} < a_n - \sqrt{2} < \frac{2}{n}$. There are two possible choices for a_{n+1}.

- **Case 1:** $a_n \geq \sqrt{2}$ and $a_{n+1} = a_n - \frac{1}{n}$. We recall the inequalities that we have in this case:

 $$-\frac{2}{n} < a_n - \sqrt{2} < \frac{2}{n}, \quad a_n - \sqrt{2} \geq 0$$

 Therefore, we have that

 $$0 \leq a_n - \sqrt{2} < \frac{2}{n}.$$

 We can find the bounds for $a_{n+1} - \sqrt{2}$ by writing

 $$a_{n+1} - \sqrt{2} = a_n - \sqrt{2} - \frac{1}{n}$$

 and note that

 $$0 - \frac{1}{n} \leq a_n - \sqrt{2} - \frac{1}{n} < \frac{2}{n} - \frac{1}{n},$$

 $$-\frac{1}{n} \leq a_n - \sqrt{2} - \frac{1}{n} < \frac{1}{n}.$$

 Therefore,

 $$|a_{n+1} - \sqrt{2}| = |a_n - \sqrt{2} - \frac{1}{n}| < \frac{1}{n} < \frac{2}{n+1}.$$

- **Case 2:** $a_n < \sqrt{2}$ and $a_{n+1} = a_n + \frac{1}{n}$. In this case, we have

 $$-\frac{2}{n} < a_n - \sqrt{2} \leq 0.$$

 Consequently,

 $$-\frac{1}{n} \leq a_n - \sqrt{2} + \frac{1}{n} < \frac{1}{n},$$

 Therefore,

 $$|a_{n+1} - \sqrt{2}| = |a_n - \sqrt{2} + \frac{1}{n}| < \frac{1}{n} < \frac{2}{n+1}.$$

 It follows from induction that

 $$|a_n - \sqrt{2}| < \frac{2}{n}$$ for all $n \in \mathbb{N}$.

 Since $\frac{2}{n} \to 0$, so by the comparison lemma, $a_n \to \sqrt{2}$.

Solution to Problem 2.1.14 Note that $\frac{1}{(k+1)(k)} = \frac{1}{k} - \frac{1}{k+1}$ for all k. Thus

$$s_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \ldots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}.$$

Thus,

$$\lim_{n \to \infty} \left(1 - \frac{1}{n}\right) = 1 - \lim_{n \to \infty} \frac{1}{n} = 1.$$

Solution to Problem 2.1.15 a. Note that

$$n^3 - 4n^2 - 100n = n^3 \left(1 - \frac{4}{n} - \frac{100}{n^2}\right).$$

Let $c > 0$ be an arbitrary real number. By Archimedean Property, there exists $N_0 \in \mathbb{N}$ such that $N_0 > c$. By choosing $N = \max\{N_0, 100\}$, we have that $N \geq 100$. Thus, for any $n \geq N$, we have (be careful! you want to make sure that the term inside the parenthesis is not a negative number):

$$n^3 \left(1 - \frac{4}{n} - \frac{100}{n^2}\right) \geq \left(1 - \frac{4}{100} - \frac{100}{1000000}\right) > \left(1 - \frac{2}{10}\right) > N > c$$ for all $n \geq N$.

Therefore, $\lim_{n \to \infty}[n^3 - 4n^2 - 100n] = \infty$.

b. Note that

$$\sqrt{n} - \frac{1}{n^2} + 4 > \sqrt{n} - 1 + 4 = \sqrt{n} + 3 > \sqrt{n}.$$
Let \(c > 0 \) be an arbitrary real number. By Archimedean Property, there exists \(N \in \mathbb{N} \) such that \(N > c^2 \), or equivalently, \(\sqrt{N} > c \), hence, for any \(n \geq N \),
\[
\sqrt{n} - \frac{1}{n^2} + 4 > \sqrt{n} \geq \sqrt{N} > c \quad \text{for all } n \geq N.
\]
Therefore, \(\lim_{n \to \infty} [\sqrt{n} - \frac{1}{n^2} + 4] = \infty \).

Solution to Problem 2.1.16 a. Note that
\[
\sqrt{n} + 1 - \sqrt{n} = (\sqrt{n} + 1 - \sqrt{n}) \cdot \frac{\sqrt{n} + 1 + \sqrt{n}}{\sqrt{n} + 1 + \sqrt{n}} = \frac{1}{\sqrt{n} + 1 + \sqrt{n}}.
\]

Consequently,
\[
\lim_{n \to \infty} [\sqrt{n} + 1 - \sqrt{n}] = \lim_{n \to \infty} \left[\frac{1}{\sqrt{n} + 1 + \sqrt{n}} \right] = 0.
\]

b. From (??), we have
\[
\lim_{n \to \infty} [(\sqrt{n} + 1 - \sqrt{n})/\sqrt{n}] = \lim_{n \to \infty} \left[\frac{\sqrt{n}}{\sqrt{n} + 1 + \sqrt{n}} \right]
= \lim_{n \to \infty} \left[\frac{1}{\sqrt{1 + \frac{1}{n} + 1}} \right]
= \frac{1}{\sqrt{2}}.
\]

c. Note that \(4n > n + 1 \) for all \(n \in \mathbb{N} \). Taking a square root on both sides, \(2\sqrt{n} > \sqrt{n + 1} \). From (??), we have
\[
(\sqrt{n} + 1 - \sqrt{n})n = \frac{n}{\sqrt{n} + 1 + \sqrt{n}} > \frac{n}{2\sqrt{n} + \sqrt{n}} = \frac{1}{3}\sqrt{n}.
\]

Let \(c > 0 \) be an arbitrary real number. By Archimedean Property, there exists \(N \in \mathbb{N} \) such that \(N > 9c^2 \), or equivalently, \(\frac{1}{3}\sqrt{N} > c \). Thus for any \(n \geq N \),
\[
\frac{1}{3}\sqrt{n} \geq \frac{1}{3}\sqrt{N} > c.
\]
Therefore, \(\lim_{n \to \infty} [(\sqrt{n} + 1 - \sqrt{n})n] = \infty \).

Solution to Problem 2.1.17. We start by writing the \(\varepsilon - N \) definitions for the two limits:
\[
(*) \lim_{n \to \infty} a_n = +\infty : \forall c > 0, \exists N = N(c) \in \mathbb{N} \text{ s.t. } a_n > c, \forall n \geq N;
\]
\[
(**) \lim_{n \to \infty} \frac{1}{a_n} = 0 : \forall \varepsilon > 0, \exists N = N(\varepsilon) \in \mathbb{N} \text{ s.t. } \left| \frac{1}{a_n} - 0 \right| < \varepsilon, \forall n \geq N.
\]

Since \(a_n > 0 \), we have:
\[
(2) \left| \frac{1}{a_n} - 0 \right| < \varepsilon \iff \frac{1}{a_n} < \varepsilon \iff a_n > \frac{1}{\varepsilon}.
\]

We were asked to show (*) \(\iff\) (**).

\(\Rightarrow\): Assume (*) is true. In order to prove (**), let \(\varepsilon > 0 \). Set \(c := \frac{1}{\varepsilon} \) and apply (*).

So, there is \(N \in \mathbb{N} \) s.t. \(a_n > c \iff a_n > \frac{1}{\varepsilon} \) for all \(n \geq N \). By the equivalence (??), we get \(\left| \frac{1}{a_n} - 0 \right| < \varepsilon \) for all \(n \in \mathbb{N} \).

\(\Leftarrow\): Assume (** is true. In order to prove (*), let \(c > 0 \). Set \(\varepsilon := \frac{1}{c} \) and apply (**).

So, there is \(N \in \mathbb{N} \) s.t. \(\left| \frac{1}{a_n} - 0 \right| < \varepsilon \iff a_n > \frac{1}{\varepsilon} = c \) for all \(n \geq N \) (here we used again (??)). Therefore, we have \(a_n > c \) for all \(n \in \mathbb{N} \).