Solution to Problem 2.4.1. For this problem, let \(\{a_n\} \) be a sequence and \(\{a_{n_k}\} \) be its subsequence.

(a) True: If there exists \(M > 0 \) such that \(|\{a_n\}| < M \) for all \(n \in \mathbb{N} \), then \(|\{a_{n_k}\}| < M \) for all \(k \in \mathbb{N} \).

(b) True: Assume that \(\{a_n\} \) is increasing. This implies that for any \(m, n \in \mathbb{N} \) such that \(m < n \), we have \(a_m < a_n \). Since \(n_k < n_{k+1} \), we have \(a_{n_k} < a_{n_{k+1}} \) for all \(k \in \mathbb{N} \). Therefore, \(\{a_{n_k}\} \) is increasing. The same argument with all inequalities reversed applies when \(\{a_n\} \) is decreasing.

(c) True: Assume that \(a_n \rightarrow a \) as \(n \rightarrow \infty \). This means that for any \(\epsilon > 0 \), there exists \(N_1 \in \mathbb{N} \) such that \(|a_n - a| < \epsilon \) for all \(n \geq N_1 \). Since the index \(n_k \) is increasing as \(k \) increases, there exists \(N \in \mathbb{N} \) such that \(n_k \geq N_1 \) for all \(k \geq N \), so \(|a_{n_k} - a| < \epsilon \) for all \(k \geq N \). This implies that \(a_{n_k} \rightarrow a \) as \(k \rightarrow \infty \).

(d) False: The sequence \(a_n = (-1)^n \) doesn’t converge but it has a subsequence \(a_{2k} = (-1)^{2k} = 1 \) for all \(k \in \mathbb{N} \) which converges.

Solution to Problem 2.4.3.

(a) \(\frac{1}{4}, \frac{1}{7}, \frac{1}{10}, \frac{1}{13}, \frac{1}{16} \).

(b) \(\frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{9}, \frac{1}{10} \).

(c) \(\frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25} \).

Solution to Problem 2.4.7. Suppose \(\{a_{n_k}\} \) is a bounded subsequence of \(\{a_n\} \). We need to notice that the subsequence has the same monotonicity direction as \(\{a_n\} \). By MCT, \(\{a_{n_k}\} \) converges to \(\alpha := \sup_{k \in \mathbb{N}} a_{n_k} \) (notice that the supremum is taken only over the terms of the subsequence). Now, for every \(k \in \mathbb{N} \), we have \(n_k \geq k \) and thus \(a_{n_k} \geq a_k \). Since \(a_{n_k} \leq \alpha \) and \(a_k \leq a_{n_k} \), we have \(a_k \leq \alpha \). Therefore, every term \(a_k \) of the sequence is less or equal than \(\alpha \). So \(\{a_n\} \) is bounded above, and since it’s clearly bounded below by \(a_1 \), it is a bounded sequence.

The case when \(\{a_n\} \) is monotonically decreasing can be treated analogously, or you can employ the above argument for the sequence \(\{−a_n\} \).

Solution to Problem 2.4.8. Suppose \(\{a_{n_k}\} \) is a convergent subsequence of \(\{a_n\} \). Then \(\{a_{n_k}\} \) is bounded (any convergent sequence is bounded). By Problem 2.4.7, \(\{a_n\} \) is bounded. So \(\{a_n\} \) is a monotone and bounded sequence. By MCT, \(\{a_n\} \) converges.

Solution to Problem 2.4.9 “⇒”: Suppose that \(\{a_n\} \) is bounded, so there is a number \(M \) such that \(|a_n| \leq M \) for all \(n \). Thus, \(−M \leq a_n \leq M \) for all \(n \). From here, we can choose \(a = −M \) and \(b = M \).

“⇐”: Suppose that there exist \(a \) and \(b \) such that \(a \leq a_n \leq b \) for all \(n \). Then, by letting \(M = \max\{|a|, |b|\} \), then it follows that \(−M \leq a \leq a_n \leq b \leq b \) for all \(n \).

Solution to Problem 2.4.10 “⇒”: Assume that \(\{a_n\} \) does not converge to \(a \), i.e.

\[\exists \epsilon > 0 \text{ s.t. } \forall N \in \mathbb{N}, \, \exists n \geq N \text{ with } |a_n - a| \geq \epsilon . \]

We’ll apply this property successively. For \(N = 1 \), there exists \(n_1 \geq 1 \) with \(|a_{n_1} - a| \geq \epsilon \). Then, for \(N = n_1 + 1 \) there exists \(n_2 \geq n_1 + 1 \) with \(|a_{n_2} - a| \geq \epsilon \). Inductively (* this means that the statement can be proved using the Induction Principle), for each \(k \in \mathbb{N} \), taking \(N = n_k + 1 \), there exists \(n_{k+1} \geq n_k + 1 \) with \(|a_{n_{k+1}} - a| \geq \epsilon \). So, we have produced an increasing sequence of indices \(\{n_k\} \) (i.e. we have given a subsequence \(\{a_{n_k}\} \) of \(\{a_n\} \)) satisfying \(|a_{n_k} - a| \geq \epsilon \) for all \(k \in \mathbb{N} \).

“⇐”: Assume that there exist \(\epsilon_0 > 0 \) and a subsequence \(\{a_{n_k}\} \) s.t. \(|a_{n_k} - a| \geq \epsilon_0 \) for all \(k \in \mathbb{N} \). Suppose for a contradiction that \(\{a_n\} \) converges to \(a \), i.e.

\[\forall \epsilon > 0 \text{ , } \exists N_{\epsilon} \in \mathbb{N} \text{ s.t. } |a_n - a| < \epsilon , \forall n \geq N_{\epsilon} . \]

In particular for \(\epsilon = \epsilon_0 \), there is \(N_0 := N_{\epsilon_0} \in \mathbb{N} \text{ s.t. } |a_n - a| < \epsilon_0 \) for all \(n \geq N_0 \). For any \(k \geq N_0 \), we have \(n_k \geq k \geq N_0 \), so \(|a_{n_k} - a| < \epsilon_0 \). This contradicts the assumption. Then it must be that \(\{a_n\} \) does not converge to \(a \).
Solution to Problem 3.1.1. a. False. Let $f(x) = 1$ if $x \geq 1$ and $f(x) = -1$ otherwise, and $g(x) = -1$ if $x \geq 1$ and $g(x) = 1$ otherwise. Then, $f + g \equiv 0$ is continuous but f and g are not continuous.

b. False. Let $f(x)$ be the function in a. Then, $f^2 \equiv 1$ is continuous.

c. True. Since $f + g$ and g are continuous, so $f = (f + g) - g$ is continuous.

d. True. Let $x \in \mathbb{N}$ and $\{x_n\}$ be a sequence in \mathbb{N} such that $\lim_{n \to \infty} x_n = x$. Then, by choosing $\epsilon = \frac{1}{2}$, there exists $N \in \mathbb{N}$ such that $|x_n - x| < \frac{1}{2}$ for all $n \geq N$. Since x_n and x are natural numbers, this implies that $x_n = x$ for all $n \geq N$. Therefore, for any $\epsilon > 0$, $|f(x_n) - f(x)| = 0 < \epsilon$ for all $n \geq N$. From this, we conclude that $\lim_{n \to \infty} f(x_n) = f(x)$.

Solution to Problem 3.1.3. We can see that $f(x)$ is not continuous at $x = 0$. To show this, we define two sequences $a_n = \frac{1}{n}$ and $b_n = \frac{1}{n}$. Then $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$ but $\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} \frac{1}{n} + 1 = 1$ and $\lim_{n \to \infty} f(b_n) = \lim_{n \to \infty} \frac{1}{n^2} = 0$. Therefore, $f(x)$ is not continuous at $x = 0$.

We will show that f is continuous at any other points $x \neq 0$. First, we assume that $x > 0$. Let $\{x_n\}$ be a sequence such that $\lim_{n \to \infty} x_n = x$. Then, by choosing $\epsilon = \frac{x}{2}$, there is $N \in \mathbb{N}$ such that $x_n > x - \frac{x}{2} = \frac{x}{2} > 0$ for all $n \geq N$. Therefore, $f(x_n) = x_n + 1$ for $n \geq N$. Defining another sequence $g_n = x_n + 1$, we have that

$$|f(x_n) - (x + 1)| = |g(x_n) - (x + 1)| \quad \text{for } n \geq N.$$

By comparison lemma, we have that $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = x + 1$.

Solution to Problem 3.1.4. Denote by f_A, f_B the restriction of f to A and B, respectively ($f_A(x) = f(x)$ for every $x \in A$ and $f_B(y) = f(y)$ for every $y \in B$).

Notice that $A \cap B = \{x_0\}$ and that $A \cup B = D$.

“\Rightarrow”: Assume that f is continuous at x_0. Let $\{x_n\}$ be a sequence in A converging to x_0. Then $x_n \in D$ and $x_n \to x_0$. Then $f_A(x_0) = f(x_0)$, $f_A(x_n) = f(x_n)$ for all $n \in \mathbb{N}$ and since f is continuous, $\{f(x_n)\}$ converges to $f(x_0)$. It follows that $f_A(x_n) \to f_A(x_0)$. This shows that f_A is continuous at x_0.

In a similar way (start by letting a sequence $\{y_n\}$ in B converge to x_0), we get the continuity of f_B at x_0.

“\Leftarrow”: Assume now that both f_A and f_B are continuous at x_0. Let $\{x_n\}$ be a sequence in D converging to x_0. We have:

$$f(x_n) = \begin{cases} f_A(x_n), & \text{if } x_n \in A \\ f_B(x_n), & \text{if } x_n \in B \end{cases}$$

(notice that the two branches agree on $A \cap B$).

We then define the following two sequences:

$$y_n = \begin{cases} x_n, & \text{if } x_n \in A \\ x_0, & \text{if } x_n \notin A \end{cases}, \quad z_n = \begin{cases} x_0, & \text{if } x_n \notin B \\ x_n, & \text{if } x_n \in B \end{cases}$$

Notice that $\{y_n\}$ is a sequence in A and $|y_n - x_0|$ is either $|x_n - x_0|$ or 0; in any case it’s definitely less or equal than $|x_n - x_0|$, for every $n \in \mathbb{N}$. By the Comparison Lemma, we get that $\{y_n\}$ converges to x_0. Since f_A is continuous, $\{f_A(y_n)\}$ converges to $f_A(x_0) = f(x_0)$. Similarly, we have that $\{z_n\}$ is a sequence in B converging to x_0 and using the continuity of f_B, we get $\{f_B(z_n)\}$ converges to $f_B(x_0) = f(x_0)$. We have

$$|f(x_n) - f(x_0)| = \begin{cases} |f_A(y_n) - f_A(x_0)|, & \text{if } x_n \in A \\ |f_B(z_n) - f_B(x_0)|, & \text{if } x_n \in B \end{cases}$$

In both branches, the corresponding quantity is less or equal than $|f_A(y_n) - f_A(x_0)| + |f_B(z_n) - f_B(x_0)|$. So we have

$$|f(x_n) - f(x_0)| \leq |f_A(y_n) - f_A(x_0)| + |f_B(z_n) - f_B(x_0)| \quad \forall n \in \mathbb{N}$$

The sequence in the right hand side above converges to 0. By the Comparison Lemma, we get that $f(x_n) \to f(x_0)$.

So for any sequence $\{x_n\}$ in D converging to x_0 we have that $\{f(x_n)\}$ converges to $f(x_0)$, i.e. f is continuous.

Solution to Problem 3.1.5. From the Problem 3.1.4, let $D = \mathbb{R}$, $A = \{x \in \mathbb{R} | x \geq 0\}$ and $B = \{x \in \mathbb{R} | x \leq 0\}$. On A, $f(x) = x^2$ which is a polynomial, so f is continuous on A. Similarly, f is continuous on B. Using Problem 3.1.4, we can conclude that f is continuous on $A \cup B = \mathbb{R}$.

Solution to Problem 3.1.6. We’ll show that g is continuous only at $x_0 = 0$.
First, let \(\{x_n\} \) be a sequence in \(\mathbb{R} \) converging to 0. For each \(n \in \mathbb{N} \) we either have \(g(x_n) = x_n^2 \) or \(g(x_n) = -x_n^2 \); in any case we have \(|g(x_n)| = x_n^2 \). Since \(\{x_n\} \) converges to 0, by the Product Rule, \(\{x_n^2\} \) converges to 0, and therefore by the Comparison Lemma \(\{g(x_n)\} \) converges to 0. Therefore \(g \) is continuous at 0.

Secondly, say \(x_0 \neq 0 \). Since \(\mathbb{Q} \) is sequentially dense in \(\mathbb{R} \), there is a sequence \(\{u_n\} \) in \(\mathbb{Q} \) convergent to \(x_0 \). Then \(g(u_n) = u_n^2 \to x_0^2 \) as \(n \to \infty \). We also have that \(\mathbb{R} \setminus \mathbb{Q} \) is sequentially dense in \(\mathbb{R} \), so there is a sequence \(\{v_n\} \) in \(\mathbb{R} \setminus \mathbb{Q} \) converging to \(x_0 \). Therefore \(g(v_n) = -v_n^2 \to -x_0^2 \). So we produced two sequences, both converging to \(x_0 \) but for which we have

\[
\lim_{n \to \infty} g(u_n) = x_0^2 = -x_0^2 = \lim_{n \to \infty} g(v_n).
\]

It follows that \(g \) is not continuous at \(x_0 \).

Solution to Problem 3.1.7. Define a sequence \(a_n = 1 - \frac{1}{n} \) for all \(n \in \mathbb{N} \). Then \(a_n \in [0, 1) \) and so \(f(a_n) \geq 2 \). In other words, \(f(a_n) \in [2, \infty) \) for all \(n \in \mathbb{N} \). Since \(a_n = 1 - \frac{1}{n} \to 1 \), by the continuity of \(f \), we have \(f(a_n) \to f(1) \). Since \([2, \infty) \) is closed, it follows that \(f(1) \in [2, \infty) \). In other words, \(f(1) \geq 2 \).