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Disclaimer: The solution may contain errors or typos so use at your own risk.

5.1

Problem. Let f be defined for all real x, and suppose that

| f (x)− f (y)| ≤ (x − y)2

for all real x and y. Prove that f is constant.

Proof. For x 6= y , | f (x)− f (y)|
x−y ≤ x − y . Taking the limit as y → x, | f ′(x)| ≤ 0 implies f ′(x) = 0 for all

x. Hence f is constant. ■

5.2

Problem. Suppose f ′(x) > 0 in (a,b). Prove that f is strictly increasing in (a,b), and let g be its
inverse function. Prove that g is differentiable, and that

g ′( f (x)) = 1

f ′(x)
a < x < b.

Proof. Take a < x < y < b. f (y)− f (x) = f ′(ξ)(y − x) for some ξ ∈ (x, y). Since f ′(ξ) > 0, f (y) >
f (x) so f is strictly increasing in (a,b). Then f ((a,b)) = (c,d) for some c,d ∈ R. For y ∈ (c,d),
let x = g (y) so f (x) = y . For k > 0, there exists h > 0 such that h = g (y +k)− x since f is strictly
increasing. Observe that k → 0 iff h → 0. So as k → 0,

g (y +k)− g (y)

k
= (x +h)−x

f (x +h)− f (x)
=

(
f (x +h)− f (x)

h

)−1

→ f ′(x)−1

since f ′(x) > 0. Hence g is differentiable and g ′( f (x)) = f ′(x)−1. ■
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5.4

Problem. If

C0 + C1

2
+·· ·+ Cn−1

n
+ Cn

n +1
= 0,

where C0, · · · ,Cn are real constants, prove that the equation C0 +C1x +·· ·+Cn−1xn−1 +Cn xn = 0
has at least one real root between 0 and 1.

Proof. Consider the polynomial p(x) =C0x+C1
2 x2+·· ·+Cn−1

n xn+ Cn
n+1 xn+1. Note that by assumption

p(1) = 0 and p(0) = 0. By mean value theorem, there exists x ∈ (0,1) such that p ′(x) =C0+C1x +
·· ·+Cn−1xn−1 +Cn xn = 0. ■

5.5

Problem. Suppose f is defined and differentiable for every x > 0, and f ′(x) → 0 as x →∞. Put
g (x) = f (x +1)− f (x). Prove that g (x) → 0 as x →∞.

Proof. By mean value theorem g (x) = f (x +1)− f (x) = f ′(ξ) for some ξ ∈ (x, x +1). As x →∞,
ξ→∞ so g (x) = f ′(ξ) → 0. ■

5.6

Problem. Suppose f is continuous for x ≥ 0; f ′(x) exists for x > 0; f (0) = 0; f ′ is monotonically

increasing. Put g (x) = f (x)
x , x > 0 and prove that g is monotonically increasing.

Proof. It suffices to show g ′(x) = x f ′(x)− f (x)
x2 ≥ 0 or equivalently x f ′(x) ≥ f (x) for all x > 0. By

mean value theorem, f (x) = f (x)− f (0) = x f ′(ξ) for some ξ ∈ (0, x). Since f ′ is monotonically
increasing and x > 0, x f ′(x) ≥ x f ′(ξ) = f (x), which is what we need to show. ■

5.9

Problem. Let f be a continuous real function on R, of which it is known that f ′(x) exists for all
x 6= 0 and that f ′(x) → 3 as x → 0. Does it follows that f ′(0) exists?

Proof.

lim
x→0

f (x)− f (0)

x
= lim

x→0
f ′(x) = 3

by L’Hospital’s rule and continuity of f . ■
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5.22

Problem. Suppose f is a real function on (−∞,∞).

(a) If f is differentiable and f ′(t ) 6= 1 for every t ∈R, prove that f has at most one fixed point.

(b) Show that the function f defined by f (t ) = t + (1+ e t )−1 has no fixed point, although 0 <
f ′(t ) < 1 for all real t .

(c) However, if there exists a constant A < 1 such that | f ′(t )| ≤ 1 for all t ∈ R, prove that a fixed
point x of f exists, and that x = lim xn , where x1 is arbitrary and xn+1 = f (xn), n = 1,2,3, · · · .

(d) Show that the process described in (c) can be visualized by the zig-zag path

(x1, x2) → (x2, x2) → (x2, x3) → (x3, x3) →··· .

Proof. (a) Suppose x 6= y are fixed points of f . Then by mean value theorem x−y = f (x)− f (y) =
f ′(t )(x − y), implying f ′(t ) = 1, a contradiction.

(b) Suppose t is a fixed point of f , i.e. t = f (t ) = t + (1+ e t )−1. Then (1+ e t )−1 = 0, which is
impossible.

(c) This is essentially the Banach fixed point theorem (Theorem 9.23 in Rudin) and idea of proof
is identical. We will show the sequence {xn} is Cauchy. First observe that by mean value
theorem |x3 − x2| = | f (x2)− f (x1)| = | f ′(ξ)||x2 − x1| ≤ A|x2 − x1| for some ξ between x1 and
x2. By induction |xn+1 −xn | ≤ An−1|x2 −x1|. Suppose n > m > N . Then

|xn −xm | ≤ |xn −xn−1|+ · · ·+ |xm+1 −xm |
≤ (An−2 +·· ·+ Am−1)|x2 −x1|
≤ Am−1(1− A)−1|x2 −x1|.

Since 0 ≤ A < 1, AN → 0 as N →∞. So |xn − xm | → 0 as n,m →∞. Hence {xn} is Cauchy.
Since R is complete, x = lim xn exists. By continuity of f , f (x) = lim f (xn) = lim xn+1 = x so
x is a fixed point.

Remark. By part (a), the above fixed point is unique. The function in part (b) fails to have
fixed point. The key observation is that f ′(t ) → 1 as t →∞ whereas in part (c) the derivative
is bounded away from 1 by a constant.

(d) Consider the {(xn , f (xn))}∞n=1 ∪ {(xn , xn)}∞n=2 as a subset of R2. The goal is to eventually land
on the line y = x.

■
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5.23

Problem. The function f defined by

f (x) = x3 +1

3

has three fixed points, say α,β,γ, where −2 <α<−1, 0 <β< 1, 1 < γ< 2. For arbitrary chosen x1,
define {xn} by setting xn+1 = f (xn).

(a) If x1 <α, prove that xn →−∞ as n →∞.

(b) If α< x < γ, prove that xn →β as n →∞.

(c) If γ< x1, prove that xn →∞ as n →∞.

Thus β can be located by this method, but α and γ cannot.

Proof. (a) If x < α, then f (x)− f (α) = f ′(ξ)(x −α) for some ξ ∈ (x,α). f ′(x) = x2 so ξ < α < −1
implies f ′(x) > 1. So f (x)− f (α) = f (x)−α< x−α so f (x) < x. It follows that {xn} is a strictly
decreasing sequence. If xn is bounded below, then xn converges, say to x ∈ R. So x must
satisfy f (x) = x (Why?), i.e. x is a fixed point. But there is no fixed point on (−∞, x) for
x <α. Hence xn →−∞.

(b) Let α < x < γ. If x1 = β, then {xn} is the constant sequence β,β, · · · . So assume x1 6= β.
The goal is to show | f (x)−β| < |x −β| and f (x) and x are on the same side of β, i.e. x <
f (x) < f ( f (x)) < ·· · < β or β < ·· · < f ( f (x)) < f (x) < x. In other words, we would like to
show if α< x1 <β, f induces a sequence {xn} increasing monotonically to β; if γ> x1 >β, f
induces a sequence {xn} decreasing monotonically to β. The obvious attempt is f (x)−β=
f (x)− f (β) = f ′(ξ)(x −β) for some ξ between x and β. If 0 < f ′(ξ) < 1, we are done; but
f ′(ξ) = ξ2 and ξ, in between x andβ, could be greater than 1 or less than −1. This means that

the mean value theorem is not strong enough in this case. Let g (x) =
{ f (x)− f (β)

x−β x 6=β

f ′(β) x =β
. We

would like tighter estimates on g (x). Note that g (x) = 1
x−β

(
x3−β3

3

)
= x2+βx+β2

3 = 1
3 (x+ β

2 )2+ β2

4

is a parabola. So the minimum of g is given by β2

4 at x =−β
2 . Also note that g (α) = g (γ) = 1.

It follows that 0 < β2

4 < g (x) < 1 for x ∈ (α,γ). Then it follows that for x 6= β, f (x)−β =
g (x)(x −β), where g (x) ∈ (0,1). So {xn} is monotonic and converges to a fixed point (same
reason as part (a)) between β and x1. Since the only fixed point in this interval is β, xn →β.

(c) Similar to part (a).
■
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