Solution to Homework 1 Math 140B

Haiyu Huang

January 11, 2019

Disclaimer: The solution may contain errors or typos so use at your own risk.

5.1

Problem. Let f be defined for all real x, and suppose that

$$|f(x) - f(y)| \le (x - y)^2$$

for all real x and y. Prove that f is constant.

Proof. For $x \neq y$, $\frac{|f(x) - f(y)|}{x - y} \leq x - y$. Taking the limit as $y \to x$, $|f'(x)| \leq 0$ implies f'(x) = 0 for all x. Hence f is constant.

5.2

Problem. Suppose f'(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b), and let g be its inverse function. Prove that g is differentiable, and that

$$g'(f(x)) = \frac{1}{f'(x)}$$
 $a < x < b$.

Proof. Take a < x < y < b. $f(y) - f(x) = f'(\xi)(y - x)$ for some $\xi \in (x, y)$. Since $f'(\xi) > 0$, f(y) > f(x) so f is strictly increasing in (a, b). Then f((a, b)) = (c, d) for some $c, d \in \mathbb{R}$. For $y \in (c, d)$, let x = g(y) so f(x) = y. For k > 0, there exists h > 0 such that h = g(y + k) - x since f is strictly increasing. Observe that $k \to 0$ iff $h \to 0$. So as $k \to 0$,

$$\frac{g(y+k) - g(y)}{k} = \frac{(x+h) - x}{f(x+h) - f(x)} = \left(\frac{f(x+h) - f(x)}{h}\right)^{-1} \to f'(x)^{-1}$$

since f'(x) > 0. Hence g is differentiable and $g'(f(x)) = f'(x)^{-1}$.

5.4

Problem. If

$$C_0 + \frac{C_1}{2} + \dots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0,$$

where C_0, \dots, C_n are real constants, prove that the equation $C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0$ has at least one real root between 0 and 1.

Proof. Consider the polynomial $p(x) = C_0 x + \frac{C_1}{2} x^2 + \dots + \frac{C_{n-1}}{n} x^n + \frac{C_n}{n+1} x^{n+1}$. Note that by assumption p(1) = 0 and p(0) = 0. By mean value theorem, there exists $x \in (0, 1)$ such that $p'(x) = C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0$.

5.5

Problem. Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to \infty$. Put g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to \infty$.

Proof. By mean value theorem $g(x) = f(x+1) - f(x) = f'(\xi)$ for some $\xi \in (x, x+1)$. As $x \to \infty$, $\xi \to \infty$ so $g(x) = f'(\xi) \to 0$.

5.6

Problem. Suppose f is continuous for $x \ge 0$; f'(x) exists for x > 0; f(0) = 0; f' is monotonically increasing. Put $g(x) = \frac{f(x)}{x}$, x > 0 and prove that g is monotonically increasing.

Proof. It suffices to show $g'(x) = \frac{xf'(x) - f(x)}{x^2} \ge 0$ or equivalently $xf'(x) \ge f(x)$ for all x > 0. By mean value theorem, $f(x) = f(x) - f(0) = xf'(\xi)$ for some $\xi \in (0, x)$. Since f' is monotonically increasing and x > 0, $xf'(x) \ge xf'(\xi) = f(x)$, which is what we need to show.

5.9

Problem. Let f be a continuous real function on \mathbb{R} , of which it is known that f'(x) exists for all $x \neq 0$ and that $f'(x) \rightarrow 3$ as $x \rightarrow 0$. Does it follows that f'(0) exists?

Proof.

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} f'(x) = 3$$

by L'Hospital's rule and continuity of f.

5.22

Problem. Suppose f is a real function on $(-\infty, \infty)$.

- (a) If f is differentiable and $f'(t) \neq 1$ for every $t \in \mathbb{R}$, prove that f has at most one fixed point.
- (b) Show that the function f defined by $f(t) = t + (1 + e^t)^{-1}$ has no fixed point, although 0 < f'(t) < 1 for all real t.
- (c) However, if there exists a constant A < 1 such that $|f'(t)| \le 1$ for all $t \in \mathbb{R}$, prove that a fixed point x of f exists, and that $x = \lim x_n$, where x_1 is arbitrary and $x_{n+1} = f(x_n)$, $n = 1, 2, 3, \cdots$.
- (d) Show that the process described in (c) can be visualized by the zig-zag path

$$(x_1, x_2) \rightarrow (x_2, x_2) \rightarrow (x_2, x_3) \rightarrow (x_3, x_3) \rightarrow \cdots$$

- *Proof.* (a) Suppose $x \neq y$ are fixed points of f. Then by mean value theorem x y = f(x) f(y) = f'(t)(x y), implying f'(t) = 1, a contradiction.
- (b) Suppose t is a fixed point of f, i.e. $t = f(t) = t + (1 + e^t)^{-1}$. Then $(1 + e^t)^{-1} = 0$, which is impossible.
- (c) This is essentially the Banach fixed point theorem (Theorem 9.23 in Rudin) and idea of proof is identical. We will show the sequence $\{x_n\}$ is Cauchy. First observe that by mean value theorem $|x_3 x_2| = |f(x_2) f(x_1)| = |f'(\xi)||x_2 x_1| \le A|x_2 x_1|$ for some ξ between x_1 and x_2 . By induction $|x_{n+1} x_n| \le A^{n-1}|x_2 x_1|$. Suppose n > m > N. Then

$$|x_n - x_m| \le |x_n - x_{n-1}| + \dots + |x_{m+1} - x_m|$$

$$\le (A^{n-2} + \dots + A^{m-1})|x_2 - x_1|$$

$$\le A^{m-1}(1 - A)^{-1}|x_2 - x_1|.$$

Since $0 \le A < 1$, $A^N \to 0$ as $N \to \infty$. So $|x_n - x_m| \to 0$ as $n, m \to \infty$. Hence $\{x_n\}$ is Cauchy. Since \mathbb{R} is complete, $x = \lim x_n$ exists. By continuity of f, $f(x) = \lim f(x_n) = \lim x_{n+1} = x$ so x is a fixed point.

Remark. By part (a), the above fixed point is unique. The function in part (b) fails to have fixed point. The key observation is that $f'(t) \rightarrow 1$ as $t \rightarrow \infty$ whereas in part (c) the derivative is bounded away from 1 by a constant.

(d) Consider the $\{(x_n, f(x_n))\}_{n=1}^{\infty} \cup \{(x_n, x_n)\}_{n=2}^{\infty}$ as a subset of \mathbb{R}^2 . The goal is to eventually land on the line y = x.

5.23

Problem. *The function f defined by*

$$f(x) = \frac{x^3 + 1}{3}$$

has three fixed points, say α , β , γ , where $-2 < \alpha < -1$, $0 < \beta < 1$, $1 < \gamma < 2$. For arbitrary chosen x_1 , define $\{x_n\}$ by setting $x_{n+1} = f(x_n)$.

- (a) If $x_1 < \alpha$, prove that $x_n \to -\infty$ as $n \to \infty$.
- (b) If $\alpha < x < \gamma$, prove that $x_n \rightarrow \beta$ as $n \rightarrow \infty$.
- (c) If $\gamma < x_1$, prove that $x_n \to \infty$ as $n \to \infty$.

Thus β can be located by this method, but α and γ cannot.

- *Proof.* (a) If $x < \alpha$, then $f(x) f(\alpha) = f'(\xi)(x \alpha)$ for some $\xi \in (x, \alpha)$. $f'(x) = x^2$ so $\xi < \alpha < -1$ implies f'(x) > 1. So $f(x) f(\alpha) = f(x) \alpha < x \alpha$ so f(x) < x. It follows that $\{x_n\}$ is a strictly decreasing sequence. If x_n is bounded below, then x_n converges, say to $x \in \mathbb{R}$. So x must satisfy f(x) = x (Why?), i.e. x is a fixed point. But there is no fixed point on $(-\infty, x)$ for $x < \alpha$. Hence $x_n \to -\infty$.
- (b) Let $\alpha < x < \gamma$. If $x_1 = \beta$, then $\{x_n\}$ is the constant sequence β, β, \cdots . So assume $x_1 \neq \beta$. The goal is to show $|f(x) - \beta| < |x - \beta|$ and f(x) and x are on the same side of β , i.e. $x < f(x) < f(f(x)) < \cdots < \beta$ or $\beta < \cdots < f(f(x)) < f(x) < x$. In other words, we would like to show if $\alpha < x_1 < \beta$, f induces a sequence $\{x_n\}$ increasing monotonically to β ; if $\gamma > x_1 > \beta$, f induces a sequence $\{x_n\}$ decreasing monotonically to β . The obvious attempt is $f(x) - \beta = f(x) - f(\beta) = f'(\xi)(x - \beta)$ for some ξ between x and β . If $0 < f'(\xi) < 1$, we are done; but $f'(\xi) = \xi^2$ and ξ , in between x and β , could be greater than 1 or less than -1. This means that the mean value theorem is not strong enough in this case. Let $g(x) = \begin{cases} \frac{f(x) - f(\beta)}{x - \beta} & x \neq \beta \\ f'(\beta) & x = \beta \end{cases}$. We would like tighter estimates on g(x). Note that $g(x) = \frac{1}{x - \beta} \left(\frac{x^3 - \beta^3}{3} \right) = \frac{x^2 + \beta x + \beta^2}{3} = \frac{1}{3} (x + \frac{\beta}{2})^2 + \frac{\beta^2}{4}$ is a parabola. So the minimum of g is given by $\frac{\beta^2}{4}$ at $x = -\frac{\beta}{2}$. Also note that $g(\alpha) = g(\gamma) = 1$. It follows that $0 < \frac{\beta^2}{4} < g(x) < 1$ for $x \in (\alpha, \gamma)$. Then it follows that for $x \neq \beta$, $f(x) - \beta = g(x)(x - \beta)$, where $g(x) \in (0, 1)$. So $\{x_n\}$ is monotonic and converges to a fixed point (same reason as part (a)) between β and x_1 . Since the only fixed point in this interval is $\beta, x_n \to \beta$.
- (c) Similar to part (a).