Solution to Homework 1 Math 140B

Haiyu Huang

January 11, 2019

Disclaimer: The solution may contain errors or typos so use at your own risk.

5.1

Problem. Let f be defined for all real x, and suppose that

$$
|f(x)-f(y)| \leq(x-y)^{2}
$$

for all real x and y. Prove that f is constant.
Proof. For $x \neq y, \frac{|f(x)-f(y)|}{x-y} \leq x-y$. Taking the limit as $y \rightarrow x,\left|f^{\prime}(x)\right| \leq 0$ implies $f^{\prime}(x)=0$ for all x. Hence f is constant.

5.2

Problem. Suppose $f^{\prime}(x)>0$ in (a, b). Prove that f is strictly increasing in (a, b), and let g be its inverse function. Prove that g is differentiable, and that

$$
g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)} \quad a<x<b
$$

Proof. Take $a<x<y<b . f(y)-f(x)=f^{\prime}(\xi)(y-x)$ for some $\xi \in(x, y)$. Since $f^{\prime}(\xi)>0, f(y)>$ $f(x)$ so f is strictly increasing in (a, b). Then $f((a, b))=(c, d)$ for some $c, d \in \mathbb{R}$. For $y \in(c, d)$, let $x=g(y)$ so $f(x)=y$. For $k>0$, there exists $h>0$ such that $h=g(y+k)-x$ since f is strictly increasing. Observe that $k \rightarrow 0$ iff $h \rightarrow 0$. So as $k \rightarrow 0$,

$$
\frac{g(y+k)-g(y)}{k}=\frac{(x+h)-x}{f(x+h)-f(x)}=\left(\frac{f(x+h)-f(x)}{h}\right)^{-1} \rightarrow f^{\prime}(x)^{-1}
$$

since $f^{\prime}(x)>0$. Hence g is differentiable and $g^{\prime}(f(x))=f^{\prime}(x)^{-1}$.

5.4

Problem. If

$$
C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0
$$

where C_{0}, \cdots, C_{n} are real constants, prove that the equation $C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0$ has at least one real root between 0 and 1 .

Proof. Consider the polynomial $p(x)=C_{0} x+\frac{C_{1}}{2} x^{2}+\cdots+\frac{C_{n-1}}{n} x^{n}+\frac{C_{n}}{n+1} x^{n+1}$. Note that by assumption $p(1)=0$ and $p(0)=0$. By mean value theorem, there exists $x \in(0,1)$ such that $p^{\prime}(x)=C_{0}+C_{1} x+$ $\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0$.

5.5

Problem. Suppose f is defined and differentiable for every $x>0$, and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$. Put $g(x)=f(x+1)-f(x)$. Prove that $g(x) \rightarrow 0$ as $x \rightarrow \infty$.

Proof. By mean value theorem $g(x)=f(x+1)-f(x)=f^{\prime}(\xi)$ for some $\xi \in(x, x+1)$. As $x \rightarrow \infty$, $\xi \rightarrow \infty$ so $g(x)=f^{\prime}(\xi) \rightarrow 0$.

5.6

Problem. Suppose f is continuous for $x \geq 0 ; f^{\prime}(x)$ exists for $x>0 ; f(0)=0 ; f^{\prime}$ is monotonically increasing. Put $g(x)=\frac{f(x)}{x}, x>0$ and prove that g is monotonically increasing.

Proof. It suffices to show $g^{\prime}(x)=\frac{x f^{\prime}(x)-f(x)}{x^{2}} \geq 0$ or equivalently $x f^{\prime}(x) \geq f(x)$ for all $x>0$. By mean value theorem, $f(x)=f(x)-f(0)=x f^{\prime}(\xi)$ for some $\xi \in(0, x)$. Since f^{\prime} is monotonically increasing and $x>0, x f^{\prime}(x) \geq x f^{\prime}(\xi)=f(x)$, which is what we need to show.

5.9

Problem. Let f be a continuous real function on \mathbb{R}, of which it is known that $f^{\prime}(x)$ exists for all $x \neq 0$ and that $f^{\prime}(x) \rightarrow 3$ as $x \rightarrow 0$. Does it follows that $f^{\prime}(0)$ exists?

Proof.

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} f^{\prime}(x)=3
$$

by L'Hospital's rule and continuity of f.

5.22

Problem. Suppose f is a real function on $(-\infty, \infty)$.
(a) If f is differentiable and $f^{\prime}(t) \neq 1$ for every $t \in \mathbb{R}$, prove that f has at most one fixed point.
(b) Show that the function f defined by $f(t)=t+\left(1+e^{t}\right)^{-1}$ has no fixed point, although $0<$ $f^{\prime}(t)<1$ for all real t.
(c) However, if there exists a constant $A<1$ such that $\left|f^{\prime}(t)\right| \leq 1$ for all $t \in \mathbb{R}$, prove that a fixed point x of f exists, and that $x=\lim x_{n}$, where x_{1} is arbitrary and $x_{n+1}=f\left(x_{n}\right), n=1,2,3, \cdots$.
(d) Show that the process described in (c) can be visualized by the zig-zag path

$$
\left(x_{1}, x_{2}\right) \rightarrow\left(x_{2}, x_{2}\right) \rightarrow\left(x_{2}, x_{3}\right) \rightarrow\left(x_{3}, x_{3}\right) \rightarrow \cdots .
$$

Proof. (a) Suppose $x \neq y$ are fixed points of f. Then by mean value theorem $x-y=f(x)-f(y)=$ $f^{\prime}(t)(x-y)$, implying $f^{\prime}(t)=1$, a contradiction.
(b) Suppose t is a fixed point of f, i.e. $t=f(t)=t+\left(1+e^{t}\right)^{-1}$. Then $\left(1+e^{t}\right)^{-1}=0$, which is impossible.
(c) This is essentially the Banach fixed point theorem (Theorem 9.23 in Rudin) and idea of proof is identical. We will show the sequence $\left\{x_{n}\right\}$ is Cauchy. First observe that by mean value theorem $\left|x_{3}-x_{2}\right|=\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|=\left|f^{\prime}(\xi)\right|\left|x_{2}-x_{1}\right| \leq A\left|x_{2}-x_{1}\right|$ for some ξ between x_{1} and x_{2}. By induction $\left|x_{n+1}-x_{n}\right| \leq A^{n-1}\left|x_{2}-x_{1}\right|$. Suppose $n>m>N$. Then

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & \leq\left|x_{n}-x_{n-1}\right|+\cdots+\left|x_{m+1}-x_{m}\right| \\
& \leq\left(A^{n-2}+\cdots+A^{m-1}\right)\left|x_{2}-x_{1}\right| \\
& \leq A^{m-1}(1-A)^{-1}\left|x_{2}-x_{1}\right| .
\end{aligned}
$$

Since $0 \leq A<1, A^{N} \rightarrow 0$ as $N \rightarrow \infty$. So $\left|x_{n}-x_{m}\right| \rightarrow 0$ as $n, m \rightarrow \infty$. Hence $\left\{x_{n}\right\}$ is Cauchy. Since \mathbb{R} is complete, $x=\lim x_{n}$ exists. By continuity of $f, f(x)=\lim f\left(x_{n}\right)=\lim x_{n+1}=x$ so x is a fixed point.

Remark. By part (a), the above fixed point is unique. The function in part (b) fails to have fixed point. The key observation is that $f^{\prime}(t) \rightarrow 1$ as $t \rightarrow \infty$ whereas in part (c) the derivative is bounded away from 1 by a constant.
(d) Consider the $\left\{\left(x_{n}, f\left(x_{n}\right)\right)\right\}_{n=1}^{\infty} \cup\left\{\left(x_{n}, x_{n}\right)\right\}_{n=2}^{\infty}$ as a subset of \mathbb{R}^{2}. The goal is to eventually land on the line $y=x$.

5.23

Problem. The function f defined by

$$
f(x)=\frac{x^{3}+1}{3}
$$

has three fixed points, say α, β, γ, where $-2<\alpha<-1,0<\beta<1,1<\gamma<2$. For arbitrary chosen x_{1}, define $\left\{x_{n}\right\}$ by setting $x_{n+1}=f\left(x_{n}\right)$.
(a) If $x_{1}<\alpha$, prove that $x_{n} \rightarrow-\infty$ as $n \rightarrow \infty$.
(b) If $\alpha<x<\gamma$, prove that $x_{n} \rightarrow \beta$ as $n \rightarrow \infty$.
(c) If $\gamma<x_{1}$, prove that $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Thus β can be located by this method, but α and γ cannot.
Proof. (a) If $x<\alpha$, then $f(x)-f(\alpha)=f^{\prime}(\xi)(x-\alpha)$ for some $\xi \in(x, \alpha) . f^{\prime}(x)=x^{2}$ so $\xi<\alpha<-1$ implies $f^{\prime}(x)>1$. So $f(x)-f(\alpha)=f(x)-\alpha<x-\alpha$ so $f(x)<x$. It follows that $\left\{x_{n}\right\}$ is a strictly decreasing sequence. If x_{n} is bounded below, then x_{n} converges, say to $x \in \mathbb{R}$. So x must satisfy $f(x)=x$ (Why?), i.e. x is a fixed point. But there is no fixed point on $(-\infty, x)$ for $x<\alpha$. Hence $x_{n} \rightarrow-\infty$.
(b) Let $\alpha<x<\gamma$. If $x_{1}=\beta$, then $\left\{x_{n}\right\}$ is the constant sequence β, β, \cdots. So assume $x_{1} \neq \beta$. The goal is to show $|f(x)-\beta|<|x-\beta|$ and $f(x)$ and x are on the same side of β, i.e. $x<$ $f(x)<f(f(x))<\cdots<\beta$ or $\beta<\cdots<f(f(x))<f(x)<x$. In other words, we would like to show if $\alpha<x_{1}<\beta$, f induces a sequence $\left\{x_{n}\right\}$ increasing monotonically to β; if $\gamma>x_{1}>\beta, f$ induces a sequence $\left\{x_{n}\right\}$ decreasing monotonically to β. The obvious attempt is $f(x)-\beta=$ $f(x)-f(\beta)=f^{\prime}(\xi)(x-\beta)$ for some ξ between x and β. If $0<f^{\prime}(\xi)<1$, we are done; but $f^{\prime}(\xi)=\xi^{2}$ and ξ, in between x and β, could be greater than 1 or less than -1 . This means that the mean value theorem is not strong enough in this case. Let $g(x)=\left\{\begin{array}{ll}\frac{f(x)-f(\beta)}{x-\beta} & x \neq \beta \\ f^{\prime}(\beta) & x=\beta\end{array}\right.$. We would like tighter estimates on $g(x)$. Note that $g(x)=\frac{1}{x-\beta}\left(\frac{x^{3}-\beta^{3}}{3}\right)=\frac{x^{2}+\beta x+\beta^{2}}{3}=\frac{1}{3}\left(x+\frac{\beta}{2}\right)^{2}+\frac{\beta^{2}}{4}$ is a parabola. So the minimum of g is given by $\frac{\beta^{2}}{4}$ at $x=-\frac{\beta}{2}$. Also note that $g(\alpha)=g(\gamma)=1$. It follows that $0<\frac{\beta^{2}}{4}<g(x)<1$ for $x \in(\alpha, \gamma)$. Then it follows that for $x \neq \beta, f(x)-\beta=$ $g(x)(x-\beta)$, where $g(x) \in(0,1)$. So $\left\{x_{n}\right\}$ is monotonic and converges to a fixed point (same reason as part (a)) between β and x_{1}. Since the only fixed point in this interval is $\beta, x_{n} \rightarrow \beta$.
(c) Similar to part (a).

