## MATH 140B - Winter 2019

## Partial solutions to Homework 2

Exercise 5.11 Since both nominator and denominator go to zero as $h \rightarrow 0$, we can apply l'Hôpital's rule to conclude that

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}} & =\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x-h)}{2 h} \\
& =\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{2 h}+\lim _{h \rightarrow 0} \frac{f^{\prime}(x)-f^{\prime}(x-h)}{2 h} \\
& =f^{\prime \prime}(x)
\end{aligned}
$$

since $f$ is assumed twice differentiable.
Letting

$$
f(x)= \begin{cases}1, & \text { if } x>0 \\ 0, & \text { if } x=0 \\ -1, & \text { if } x<0\end{cases}
$$

it is easy to check that the above limit exists and equals zero, whereas $f$ is not even continuous at zero.

Exercise 5.12 One can easily calculate that

$$
f^{\prime}(x)= \begin{cases}3 x^{2}, & \text { if } x \geq 0, \\ -3 x^{2}, & \text { if } x<0,\end{cases}
$$

and

$$
f^{\prime \prime}(x)= \begin{cases}6 x, & \text { if } x \geq 0 \\ -6 x, & \text { if } x<0\end{cases}
$$

$f^{(3)}(0)$ does not exist as the left third derivative at zero is -6 , and the right one is 6 .
Exercise 5.14 From the definition, it follows as in Exercise 4.23 from last quarter that $f$ is convex on $(a, b)$ if and only if

$$
\frac{f(z)-f(x)}{z-x} \leq \frac{f(y)-f(z)}{y-z}
$$

for all $a<x<z<y<b$. From this the solution follows easily by applying the mean value theorem.
The claim about $f^{\prime \prime}$ follows immediately since a differentiable function is monotonically increasing if and only if its derivative is nonnegative.

Exercise 5.15 Let $x \in(a, \infty), h>0$. Following the hint and taking $\alpha=x, \beta=x+2 h$ in Taylor's theorem, we get

$$
f^{\prime}(x)=\frac{1}{2 h}(f(x+2 h)-f(x))-h f^{\prime \prime}(\xi)
$$

for some $\xi \in(x, x+2 h)$. Taking absolute values and using the triangle inequality, we get

$$
M_{1} \leq \frac{M_{0}}{h}+h M_{2} .
$$

Plugging in $h=\sqrt{\frac{M_{0}}{M_{2}}}$ gives the desired result.
For vector valued functions, the same inequality holds. One can proceed as follows. Let $\varepsilon>0$. Take $x_{0}$ such that $\left|\mathbf{f}^{\prime}\left(x_{0}\right)\right| \geq M_{1}-\varepsilon$, let $\mathbf{v}=\frac{\mathbf{f}^{\prime}\left(x_{0}\right)}{\left|\mathbf{f}^{\prime}\left(x_{0}\right)\right|}$ and consider

$$
\varphi(t)=\mathbf{v} \cdot \mathbf{f}(t)
$$

Denoting by $M_{i}^{\varphi}$ the corresponding constants for the (real-valued) function $\varphi$, one easily checks that $M_{0}^{\varphi} \leq M_{0}, M_{2}^{\varphi} \leq M_{2}$, and $M_{1}^{\varphi} \geq\left|\varphi^{\prime}\left(x_{0}\right)\right| \geq M_{1}-\varepsilon$. From this the result immediately follows.

Exercise 5.16 The assumptions mean that, in the terminology of exercise $5.15, M_{2}<\infty$ and $M_{0} \rightarrow 0$ as $a \rightarrow \infty$. Hence $M_{1} \rightarrow 0$ as $a \rightarrow \infty$, i.e. $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$.

Extra Problem 1. Applying Taylor's theorem with $n=3$ to $\cos (x)$, we get

$$
\cos (x)=1-\frac{x^{2}}{2!}+\frac{\sin (\xi)}{3!} x^{3}
$$

for some $\xi \in\left(0, \frac{\pi}{2}\right)$. As sin is positive on this interval, we get the left inequality. For $n=5$ we similarly get

$$
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{\sin (\eta)}{5!} x^{5}
$$

for some $\eta \in\left(0, \frac{\pi}{2}\right)$, and thus the right inequality.

Exercise 6.1 Since $f$ is only nonzero at $x_{0}$, it is easy to see that

$$
L(P, f, \alpha)=0
$$

for any partition $P$, and

$$
U(P, f, \alpha)=\Delta\left(\alpha_{i}\right)
$$

where $\alpha(i)$ is the interval in the partition $P$ containing $x_{0}$. Since $\alpha$ is continuous at $x_{0}$, we get $\inf U(P, f, \alpha)=0$. In other words $f \in \mathfrak{R}(\alpha)$ and $\int f d \alpha=0$.

Exercise 6.4 Fix $a<b$. Since both the rational and irrational numbers are dense, we see that

$$
L(P, f)=0
$$

and

$$
U(P, f)=b-a
$$

for any partition $P$ of $[a, b]$. Hence $\inf U(P, f)=b-a>0=\sup L(P, f)$, and so $f \notin \mathfrak{R}$ on $[a, b]$.

