MATH 140B - Winter 2019 Partial solutions to Homework 2

Exercise 5.11 Since both nominator and denominator go to zero as $h \to 0$, we can apply l'Hôpital's rule to conclude that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = \lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h}$$
$$= \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{2h} + \lim_{h \to 0} \frac{f'(x) - f'(x-h)}{2h}$$
$$= f''(x)$$

since f is assumed twice differentiable. Letting

$$f(x) = \begin{cases} 1, & \text{if } x > 0, \\ 0, & \text{if } x = 0, \\ -1, & \text{if } x < 0, \end{cases}$$

it is easy to check that the above limit exists and equals zero, whereas f is not even continuous at zero.

Exercise 5.12 One can easily calculate that

$$f'(x) = \begin{cases} 3x^2, & \text{if } x \ge 0, \\ -3x^2, & \text{if } x < 0, \end{cases}$$

and

$$f''(x) = \begin{cases} 6x, & \text{if } x \ge 0, \\ -6x, & \text{if } x < 0. \end{cases}$$

 $f^{(3)}(0)$ does not exist as the left third derivative at zero is -6, and the right one is 6.

Exercise 5.14 From the definition, it follows as in Exercise 4.23 from last quarter that f is convex on (a, b) if and only if

$$\frac{f(z) - f(x)}{z - x} \le \frac{f(y) - f(z)}{y - z}$$

for all a < x < z < y < b. From this the solution follows easily by applying the mean value theorem.

The claim about f'' follows immediately since a differentiable function is monotonically increasing if and only if its derivative is nonnegative.

Exercise 5.15 Let $x \in (a, \infty), h > 0$. Following the hint and taking $\alpha = x, \beta = x + 2h$ in Taylor's theorem, we get

$$f'(x) = \frac{1}{2h}(f(x+2h) - f(x)) - hf''(\xi)$$

for some $\xi \in (x, x + 2h)$. Taking absolute values and using the triangle inequality, we get

$$M_1 \le \frac{M_0}{\underset{1}{h}} + hM_2.$$

Plugging in $h = \sqrt{\frac{M_0}{M_2}}$ gives the desired result. For vector valued functions, the same inequality holds. One can proceed as follows. Let $\varepsilon > 0$. Take x_0 such that $|\mathbf{f}'(x_0)| \ge M_1 - \varepsilon$, let $\mathbf{v} = \frac{\mathbf{f}'(x_0)}{|\mathbf{f}'(x_0)|}$ and consider

$$\varphi(t) = \mathbf{v} \cdot \mathbf{f}(t)$$

Denoting by M_i^{φ} the corresponding constants for the (real-valued) function φ , one easily checks that $M_0^{\varphi} \leq M_0, M_2^{\varphi} \leq M_2$, and $M_1^{\varphi} \geq |\varphi'(x_0)| \geq M_1 - \varepsilon$. From this the result immediately follows.

Exercise 5.16 The assumptions mean that, in the terminology of exercise 5.15, $M_2 < \infty$ and $M_0 \to 0$ as $a \to \infty$. Hence $M_1 \to 0$ as $a \to \infty$, i.e. $f'(x) \to 0$ as $x \to \infty$.

Extra Problem 1. Applying Taylor's theorem with n = 3 to cos(x), we get

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{\sin(\xi)}{3!}x^3$$

for some $\xi \in (0, \frac{\pi}{2})$. As sin is positive on this interval, we get the left inequality. For n = 5 we similarly get

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{\sin(\eta)}{5!}x^5,$$

for some $\eta \in (0, \frac{\pi}{2})$, and thus the right inequality.

Exercise 6.1 Since f is only nonzero at x_0 , it is easy to see that

$$L(P, f, \alpha) = 0$$

for any partition P, and

$$U(P, f, \alpha) = \Delta(\alpha_i)$$

where $\alpha(i)$ is the interval in the partition P containing x_0 . Since α is continuous at x_0 , we get inf $U(P, f, \alpha) = 0$. In other words $f \in \mathfrak{R}(\alpha)$ and $\int f d\alpha = 0$.

Exercise 6.4 Fix a < b. Since both the rational and irrational numbers are dense, we see that

L(P, f) = 0,

and

$$U(P,f) = b - a$$

U(P, f) = b - a, for any partition P of [a, b]. Hence $\inf U(P, f) = b - a > 0 = \sup L(P, f)$, and so $f \notin \mathfrak{R}$ on [a, b].