
MATH 140B - Winter 2019

Partial solutions to Homework 2

Exercise 5.11 Since both nominator and denominator go to zero as h→ 0, we can apply l’Hôpital’s
rule to conclude that

lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
= lim

h→0

f ′(x+ h)− f ′(x− h)

2h

= lim
h→0

f ′(x+ h)− f ′(x)

2h
+ lim
h→0

f ′(x)− f ′(x− h)

2h

= f ′′(x)

since f is assumed twice differentiable.
Letting

f(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0,

it is easy to check that the above limit exists and equals zero, whereas f is not even continuous at
zero.

Exercise 5.12 One can easily calculate that

f ′(x) =

{
3x2, if x ≥ 0,

−3x2, if x < 0,

and

f ′′(x) =

{
6x, if x ≥ 0,

−6x, if x < 0.

f (3)(0) does not exist as the left third derivative at zero is -6, and the right one is 6.

Exercise 5.14 From the definition, it follows as in Exercise 4.23 from last quarter that f is convex
on (a, b) if and only if

f(z)− f(x)

z − x
≤ f(y)− f(z)

y − z
for all a < x < z < y < b. From this the solution follows easily by applying the mean value
theorem.
The claim about f ′′ follows immediately since a differentiable function is monotonically increasing
if and only if its derivative is nonnegative.

Exercise 5.15 Let x ∈ (a,∞), h > 0. Following the hint and taking α = x, β = x+ 2h in Taylor’s
theorem, we get

f ′(x) =
1

2h
(f(x+ 2h)− f(x))− hf ′′(ξ)

for some ξ ∈ (x, x+ 2h). Taking absolute values and using the triangle inequality, we get

M1 ≤
M0

h
+ hM2.

1



2

Plugging in h =
√

M0
M2

gives the desired result.

For vector valued functions, the same inequality holds. One can proceed as follows. Let ε > 0.

Take x0 such that |f ′(x0)| ≥M1 − ε, let v = f ′(x0)
|f ′(x0)| and consider

ϕ(t) = v · f(t).
Denoting by Mϕ

i the corresponding constants for the (real-valued) function ϕ, one easily checks
that Mϕ

0 ≤M0,M
ϕ
2 ≤M2, and Mϕ

1 ≥ |ϕ′(x0)| ≥M1− ε. From this the result immediately follows.

Exercise 5.16 The assumptions mean that, in the terminology of exercise 5.15, M2 < ∞ and
M0 → 0 as a→∞. Hence M1 → 0 as a→∞, i.e. f ′(x)→ 0 as x→∞.

Extra Problem 1. Applying Taylor’s theorem with n = 3 to cos(x), we get

cos(x) = 1− x2

2!
+

sin(ξ)

3!
x3

for some ξ ∈ (0, π2 ). As sin is positive on this interval, we get the left inequality. For n = 5 we
similarly get

cos(x) = 1− x2

2!
+
x4

4!
− sin(η)

5!
x5,

for some η ∈ (0, π2 ), and thus the right inequality.

Exercise 6.1 Since f is only nonzero at x0, it is easy to see that

L(P, f, α) = 0

for any partition P , and
U(P, f, α) = ∆(αi)

where α(i) is the interval in the partition P containing x0. Since α is continuous at x0, we get
inf U(P, f, α) = 0. In other words f ∈ R(α) and

∫
fdα = 0.

Exercise 6.4 Fix a < b. Since both the rational and irrational numbers are dense, we see that

L(P, f) = 0,

and
U(P, f) = b− a,

for any partition P of [a, b]. Hence inf U(P, f) = b− a > 0 = supL(P, f), and so f /∈ R on [a, b].


