Solution to Homework 3 Math 140B

Haiyu Huang

January 25, 2019

Disclaimer: The solution may contain errors or typos so use at your own risk.

6.2

Problem. Suppose $f \ge 0$, f is continuous on [a, b], and $\int_a^b f(x) dx = 0$. Prove that f(x) = 0 for all $x \in [a, b]$.

Proof. Suppose on the contrary that there exists $x \in [a, b]$ such that f(x) > 0. By continuity, there exists $\delta > 0$ such that $|f(x) - f(y)| < \frac{f(x)}{2}$ for all $y \in (x - \delta, x + \delta)$. Refine δ so that $(x - \delta, x + \delta) \subset [a, b]$. Then $\inf_{y \in [x - \delta/2, x + \delta/2]} f(y) \ge \frac{f(x)}{2}$. Let $Q = \{a, x - \delta/2, x + \delta/2, b\}$. Since $f \ge 0$,

$$\int_{a}^{b} f = \sup_{P} L(P, f) \ge L(Q, f) \ge \delta \cdot \frac{f(x)}{2} > 0,$$

contradiction.

Remark. Note how the continuity hypothesis is used. If *f* is not assumed to be continuous, we could take *f* to be 1 at a single point and 0 elsewhere as in Exercise 6.1.

6.5

Problem. Suppose f is bounded real function on [a, b], and $f^2 \in \mathbb{R}$ on [a, b]. Does it follow that $f \in \mathbb{R}$? Does the answer change if we assume that $f^3 \in \mathbb{R}$?

Proof. Consider the function $f(x) = \begin{cases} 1 & x \in \mathbb{Q} \cap [a, b] \\ -1 & x \notin \mathbb{Q} \cap [a, b] \end{cases}$. $f^2 \equiv 1$ on [a, b] so $f^2 \in \mathbb{R}$ and $\int f^2 = b - a$. However, $f \notin \mathbb{R}$ as U(P, f) = b - a and L(P, f) = -1 for all partition P. Now assume $f^3 \in \mathbb{R}$. Then $f = \phi(f^3)$, where $\phi : \mathbb{R} \to \mathbb{R}$ given by $x \mapsto \sqrt[3]{x}$. Since ϕ is continuous, $f \in \mathbb{R}$ by Theorem 6.11.

Remark. Note that $f^2 \in \mathbb{R}$ is not enough to conclude $f \in \mathbb{R}$ because the function $x \mapsto x^2$ is not injective so has no continuous inverse on \mathbb{R} .

6.8

Problem. Assume that $f \ge 0$ and f decreases monotonically on $[1,\infty)$. Prove that $\int_1^{\infty} f(x) dx$ converges iff $\sum_{n=1}^{\infty} f(n)$ converges.

Proof. Let $n \in \mathbb{N}$ and $P_n = \{1, 2, \dots, n\}$. Since *f* decreases monotonically on $[1, \infty)$,

$$L(P_n, f) = \sum_{k=2}^n f(k) \le \int_1^n f(x) dx \le U(P_n, f) = \sum_{k=1}^{n-1} f(k).$$

It follows from $f \ge 0$ that

$$\sum_{k=2}^{n} f(k) \le \int_{1}^{z} f(x) dx \le \sum_{k=1}^{n} f(k)$$

for $n \le z < n + 1$. Hence the conclusion.

6.11

Problem. Let α be a fixed increasing function on [a, b]. For $u \in \mathbb{R}(\alpha)$, define $||u||_2 = \left\{ \int_a^b |u|^2 d\alpha \right\}^{1/2}$. Suppose $f, g, h \in \mathbb{R}(\alpha)$, and prove the triangle inequality

$$||f - h||_2 \le ||f - g||_2 + ||g - h||_2$$

Proof. It suffices to prove $||f + g||_2 \le ||f||_2 + ||g||_2$ for $f, g \in \mathcal{R}(\alpha)$. Define an inner product on the vector space $\mathcal{R}(\alpha)$ by the map $\mathcal{R}(\alpha) \times \mathcal{R}(\alpha) \to \mathbb{R}$ by $\langle f, g \rangle = \int_a^b fg d\alpha$. Verify that this map is an inner product, i.e. the following holds for all $a, b \in \mathbb{R}$, $f, g, h \in \mathcal{R}(\alpha)$

- $\langle af + bg, h \rangle = a \langle f, h \rangle + b \langle g, h \rangle$
- $\langle g, f \rangle = \langle f, g \rangle$
- $\langle f, f \rangle \ge 0$ for all $f \in \mathcal{R}(\alpha)$ and $\langle f, f \rangle = 0$ iff f = 0.

Observe that $||f||_2 = \sqrt{\langle f, f \rangle}$. The proposition below shows any vector space with an inner product with the above axioms satisfies the Cauchy-Schwarz inequality and the triangle inequality is a consequence of Cauchy-Schwarz:

$$\begin{split} ||f + g||_2^2 &= \langle f + g, f + g \rangle \\ &= ||f||_2^2 + 2\langle f, g \rangle + ||g||_2^2 \\ &\leq ||f||_2^2 + 2||f||_2||g||_2 + ||g||_2^2 \\ &= (||f||_2 + ||g||_2)^2. \end{split}$$

Proposition. $|\langle x, y \rangle| \le ||x||||y||$ with equality iff *x* and *y* are linearly dependent.

Proof. Assume $\langle x, y \rangle \neq 0$. Let $\alpha = \operatorname{sign} \langle x, y \rangle \in \{\pm 1\}$ and $z = \alpha y$, so that $\langle x, z \rangle = \langle z, x \rangle = |\langle x, y \rangle|$. For $t \in \mathbb{R}$ we have

$$0 \le \langle x - tz, x - tz \rangle = ||x||^{2} + t^{2} ||y||^{2} - 2t |\langle x, y \rangle|$$

$$= \frac{1}{||y||^{2}} \left(t^{2} - \frac{2|\langle x, y \rangle|}{||y||^{2}} t \right) + ||x||^{2}$$

$$= ||y||^{2} \left(t - \frac{|\langle x, y \rangle|}{||y||^{2}} \right)^{2} - \frac{|\langle x, y \rangle|^{2}}{||y||^{2}} + ||x||^{2}$$

The expression on the right is a quadratic function of *t* whose absolute minimum occurs at $t = ||y||^{-2} |\langle x, y \rangle|$. Setting *t* equal to the absolute minimum, we obtain

$$0 \le ||x - tz||^{2} = ||x||^{2} - ||y||^{-2} |\langle x, y \rangle|^{2}$$

with equality iff $x = tz = \alpha t y$.

Remark. I lied. $\Re(\alpha)$ with the inner product defined above is ALMOST an inner product space. Which axiom does not hold? (I told you to verify.) Even though $\Re(\alpha)$ is not an inner product space, the part of axioms that it fails to satisfy does not affect the proof of the Cauchy-Schwarz inequality. However, the statement that equality iff linearly dependent does not hold for $\Re(\alpha)$.

6.12

Problem. Suppose $f \in \Re(\alpha)$ and $\epsilon > 0$. Prove that there exists a continuous function g on [a, b] such that $||f - g||_2 < \epsilon$.

Proof. Let $\epsilon > 0$ and $M = \sup |f(x)|$. Since $f \in \Re(\alpha)$, there exists $P = \{a = x_0, \dots, x_n = b\}$ such that $U(P, f, \alpha) - L(P, f, \alpha) = \sum_i (M_i - m_i) \Delta \alpha_i < \frac{\epsilon^2}{2M}$. Let g be the piecewise linear function $g(t) = \frac{x_i - t}{\Delta x_i} f(x_{i-1}) + \frac{t - x_{i-1}}{\Delta x_i} f(x_i)$ for $t \in [x_{i-1}, x_i]$, i.e. g is the line segment connecting $f(x_{i-1})$ and $f(x_i)$ for $1 \le i \le n$. So g is continuous. It is easy to see that $\sup_{x \in [x_{i-1}, x_i]} |f(x) - g(x)| \le M_i - m_i$ and the infimum is 0. So, $L(P, |f - g|^2, \alpha) = 0$ for all P and

$$U(P, |f - g|^{2}, \alpha) = \sum_{i} \sup_{x \in [x_{i-1}, x_{i}]} |f(x) - g(x)|^{2} \Delta \alpha_{i}$$

$$\leq \sum_{i} (M_{i} - m_{i})^{2} \Delta \alpha_{i}$$

$$\leq 2M \sum_{i} (M_{i} - m_{i}) \Delta \alpha_{i}$$

$$\leq \epsilon^{2}.$$

Hence $||f - g||_2^2 \le U(P, |f - g|^2, \alpha) < \epsilon^2$. Therefore, $||f - g||_2 < \epsilon$.

1

Problem. Consider $f : [a,b] \to \mathbb{R}$ defined by $f(x) = x^2$. Compute $\int_a^b f(x) dx$ using only the definition of the integral.

Proof. Assume $b > a \ge 0$. First we need to show $f \in \mathbb{R}$ on [a, b]. Consider the partition $P_n = \{a, a + \frac{b-a}{n}, \dots, b\}$. By computation,

$$U(P_n, f) = \sum_{k=1}^n \frac{b-a}{n} \left(a + k \cdot \frac{b-a}{n} \right)^2 = a^2 (b-a) + (b-a)^3 \frac{(n+1)(2n+1)}{6n^2} + a(b-a)^2 \frac{n+1}{n}$$

Similarly, $L(P_n, f) = \sum_{k=0}^{n-1} \frac{b-a}{n} \left(a + k \cdot \frac{b-a}{n}\right)^2 = a^2(b-a) + (b-a)^3 \frac{(n-1)(2n-1)}{6n^2} + a(b-a)^2 \frac{n-1}{n}$. So $U(P_n, f) - L(P_n, f) = \frac{(b-a)(b^2-a^2)}{n} \to 0$ as $n \to \infty$, implying $f \in \mathbb{R}$. Then $\int_a^b f(x) dx = \inf_n U(P_n, f) = \sup_n L(P_n, f) = \frac{b^3-a^3}{3}$. Note that we assume $b > a \ge 0$ so that f is monotonically increasing, $M_i = f(x_i)$, and $m_i = f(x_{i-1})$. Convince yourself this assumption is valid by the continuity of f as the mesh $||P_n|| = \frac{1}{n} \to 0$.

2

Problem. Assume $f : [a, b] \to \mathbb{R}$ satisfies $f \in \mathcal{R}(\alpha)$. Prove that $f^2 \in \mathcal{R}(\alpha)$.

Proof. Let $\epsilon > 0$ and *P* be a partition such that $\sum_{i} (M_i - m_i) \Delta \alpha_i < \frac{\epsilon}{2M}$, where $M = \sup_{x \in [a,b]} |f(x)|$. Observe that $\sup_{x \in [x_{i-1},x_i]} |f(x)^2| = \sup_{x \in [x_{i-1},x_i]} |f(x)|^2 = (\sup_{x \in [x_{i-1},x_i]} |f(x)|)^2 = M_i^2$ and similarly $\inf_{x \in [x_{i-1},x_i]} |f(x)^2| = m_i^2$. So

$$U(P, f^2) - L(P, f^2) = \sum_i (M_i^2 - m_i^2) \Delta \alpha_i \le 2M \sum_i (M_i - m_i) \Delta \alpha_i < \epsilon,$$

implying $f^2 \in \mathcal{R}(\alpha)$.