# Solution to Homework 3 Math 140B 

Haiyu Huang

January 25, 2019

Disclaimer: The solution may contain errors or typos so use at your own risk.

## 6.2

Problem. Suppose $f \geq 0, f$ is continuous on $[a, b]$, and $\int_{a}^{b} f(x) d x=0$. Prove that $f(x)=0$ for all $x \in[a, b]$.
Proof. Suppose on the contrary that there exists $x \in[a, b]$ such that $f(x)>0$. By continuity, there exists $\delta>0$ such that $|f(x)-f(y)|<\frac{f(x)}{2}$ for all $y \in(x-\delta, x+\delta)$. Refine $\delta$ so that $(x-\delta, x+$ $\delta) \subset[a, b]$. Then $\inf _{y \in[x-\delta / 2, x+\delta / 2]} f(y) \geq \frac{f(x)}{2}$. Let $Q=\{a, x-\delta / 2, x+\delta / 2, b\}$. Since $f \geq 0$,

$$
\int_{a}^{b} f=\sup _{P} L(P, f) \geq L(Q, f) \geq \delta \cdot \frac{f(x)}{2}>0
$$

contradiction.
Remark. Note how the continuity hypothesis is used. If $f$ is not assumed to be continuous, we could take $f$ to be 1 at a single point and 0 elsewhere as in Exercise 6.1.

## 6.5

Problem. Suppose $f$ is bounded real function on $[a, b]$, and $f^{2} \in \mathcal{R}$ on $[a, b]$. Does it follow that $f \in \mathcal{R}$ ? Does the answer change if we assume that $f^{3} \in \mathcal{R}$ ?
Proof. Consider the function $f(x)=\left\{\begin{array}{ll}1 & x \in \mathbb{Q} \cap[a, b] \\ -1 & x \notin \mathbb{Q} \cap[a, b]\end{array} . f^{2} \equiv 1\right.$ on $[a, b]$ so $f^{2} \in \mathcal{R}$ and $\int f^{2}=$ $b-a$. However, $f \notin \mathcal{R}$ as $U(P, f)=b-a$ and $L(P, f)=-1$ for all partition $P$. Now assume $f^{3} \in \mathcal{R}$. Then $f=\phi\left(f^{3}\right)$, where $\phi: \mathbb{R} \rightarrow \mathbb{R}$ given by $x \mapsto \sqrt[3]{x}$. Since $\phi$ is continuous, $f \in \mathcal{R}$ by Theorem 6.11.

Remark. Note that $f^{2} \in \mathcal{R}$ is not enough to conclude $f \in \mathcal{R}$ because the function $x \mapsto x^{2}$ is not injective so has no continuous inverse on $\mathbb{R}$.

## 6.8

Problem. Assume that $f \geq 0$ and $f$ decreases monotonically on $[1, \infty)$. Prove that $\int_{1}^{\infty} f(x) d x$ converges iff $\sum_{n=1}^{\infty} f(n)$ converges.

Proof. Let $n \in \mathbb{N}$ and $P_{n}=\{1,2, \cdots, n\}$. Since $f$ decreases monotonically on $[1, \infty)$,

$$
L\left(P_{n}, f\right)=\sum_{k=2}^{n} f(k) \leq \int_{1}^{n} f(x) d x \leq U\left(P_{n}, f\right)=\sum_{k=1}^{n-1} f(k) .
$$

It follows from $f \geq 0$ that

$$
\sum_{k=2}^{n} f(k) \leq \int_{1}^{z} f(x) d x \leq \sum_{k=1}^{n} f(k)
$$

for $n \leq z<n+1$. Hence the conclusion.

### 6.11

Problem. Let $\alpha$ be a fixed increasingfunction on $[a, b]$. For $u \in \mathcal{R}(\alpha)$, define $\|u\|_{2}=\left\{\int_{a}^{b}|u|^{2} d \alpha\right\}^{1 / 2}$. Suppose $f, g, h \in \mathcal{R}(\alpha)$, and prove the triangle inequality

$$
\|f-h\|_{2} \leq\|f-g\|_{2}+\|g-h\|_{2}
$$

Proof. It suffices to prove $\|f+g\|_{2} \leq\|f\|_{2}+\|g\|_{2}$ for $f, g \in \mathcal{R}(\alpha)$. Define an inner product on the vector space $\mathcal{R}(\alpha)$ by the map $\mathcal{R}(\alpha) \times \mathcal{R}(\alpha) \rightarrow \mathbb{R}$ by $\langle f, g\rangle=\int_{a}^{b} f g d \alpha$. Verify that this map is an inner product, i.e. the following holds for all $a, b \in \mathbb{R}, f, g, h \in \mathcal{R}(\alpha)$

- $\langle a f+b g, h\rangle=a\langle f, h\rangle+b\langle g, h\rangle$
- $\langle g, f\rangle=\langle f, g\rangle$
- $\langle f, f\rangle \geq 0$ for all $f \in \mathcal{R}(\alpha)$ and $\langle f, f\rangle=0$ iff $f=0$.

Observe that $\|f\|_{2}=\sqrt{\langle f, f\rangle}$. The proposition below shows any vector space with an inner product with the above axioms satisfies the Cauchy-Schwarz inequality and the triangle inequality is a consequence of Cauchy-Schwarz:

$$
\begin{aligned}
\|f+g\|_{2}^{2} & =\langle f+g, f+g\rangle \\
& =\|f\|_{2}^{2}+2\langle f, g\rangle+\|g\|_{2}^{2} \\
& \leq\|f\|_{2}^{2}+2\|f\|_{2}\|g\|_{2}+\|g\|_{2}^{2} \\
& =\left(\|f\|_{2}+\|g\|_{2}\right)^{2} .
\end{aligned}
$$

Proposition. $|\langle x, y\rangle| \leq\|x\|\|y\|$ with equality iff $x$ and $y$ are linearly dependent.
Proof. Assume $\langle x, y\rangle \neq 0$. Let $\alpha=\operatorname{sign}\langle x, y\rangle \in\{ \pm 1\}$ and $z=\alpha y$, so that $\langle x, z\rangle=\langle z, x\rangle=|\langle x, y\rangle|$. For $t \in \mathbb{R}$ we have

$$
\begin{aligned}
0 \leq\langle x-t z, x-t z\rangle & =\|x\|^{2}+t^{2}\|y\|^{2}-2 t|\langle x, y\rangle| \\
& =\frac{1}{\|y\|^{2}}\left(t^{2}-\frac{2|\langle x, y\rangle|}{\|y\|^{2}} t\right)+\|x\|^{2} \\
& =\|y\|^{2}\left(t-\frac{|\langle x, y\rangle|}{\|y\|^{2}}\right)^{2}-\frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}}+\|x\|^{2}
\end{aligned}
$$

The expression on the right is a quadratic function of $t$ whose absolute minimum occurs at $t=\|y\|^{-2}|\langle x, y\rangle|$. Setting $t$ equal to the absolute minimum, we obtain

$$
0 \leq\|x-t z\|^{2}=\|x\|^{2}-\|y\|^{-2}|\langle x, y\rangle|^{2}
$$

with equality iff $x=t z=\alpha t y$.
Remark. I lied. $\mathcal{R}(\alpha)$ with the inner product defined above is ALMOST an inner product space. Which axiom does not hold? (I told you to verify.) Even though $\mathcal{R}(\alpha)$ is not an inner product space, the part of axioms that it fails to satisfy does not affect the proof of the Cauchy-Schwarz inequality. However, the statement that equality iff linearly dependent does not hold for $\mathcal{R}(\alpha)$.

### 6.12

Problem. Suppose $f \in \mathcal{R}(\alpha)$ and $\epsilon>0$. Prove that there exists a continuous function $g$ on $[a, b]$ such that $\|f-g\|_{2}<\epsilon$.

Proof. Let $\epsilon>0$ and $M=\sup |f(x)|$. Since $f \in \mathcal{R}(\alpha)$, there exists $P=\left\{a=x_{0}, \cdots, x_{n}=b\right\}$ such that $U(P, f, \alpha)-L(P, f, \alpha)=\sum_{i}\left(M_{i}-m_{i}\right) \Delta \alpha_{i}<\frac{\epsilon^{2}}{2 M}$. Let $g$ be the piecewise linear function $g(t)=$ $\frac{x_{i}-t}{\Delta x_{i}} f\left(x_{i-1}\right)+\frac{t-x_{i-1}}{\Delta x_{i}} f\left(x_{i}\right)$ for $t \in\left[x_{i-1}, x_{i}\right]$, i.e. $g$ is the line segment connecting $f\left(x_{i-1}\right)$ and $f\left(x_{i}\right)$ for $1 \leq i \leq n$. So $g$ is continuous. It is easy to see that $\sup _{x \in\left[x_{i-1}, x_{i}\right]}|f(x)-g(x)| \leq M_{i}-m_{i}$ and the infinmum is 0 . So, $L\left(P,|f-g|^{2}, \alpha\right)=0$ for all $P$ and

$$
\begin{aligned}
U\left(P,|f-g|^{2}, \alpha\right) & =\sum_{i} \sup _{x \in\left[x_{i-1}, x_{i}\right]}|f(x)-g(x)|^{2} \Delta \alpha_{i} \\
& \leq \sum_{i}\left(M_{i}-m_{i}\right)^{2} \Delta \alpha_{i} \\
& \leq 2 M \sum_{i}\left(M_{i}-m_{i}\right) \Delta \alpha_{i} \\
& <\epsilon^{2} .
\end{aligned}
$$

Hence $\|f-g\|_{2}^{2} \leq U\left(P,|f-g|^{2}, \alpha\right)<\epsilon^{2}$. Therefore, $\|f-g\|_{2}<\epsilon$.

## 1

Problem. Consider $f:[a, b] \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$. Compute $\int_{a}^{b} f(x) d x$ using only the definition of the integral.

Proof. Assume $b>a \geq 0$. First we need to show $f \in \mathcal{R}$ on $[a, b]$. Consider the partition $P_{n}=$ $\left\{a, a+\frac{b-a}{n}, \cdots, b\right\}$. By computation,

$$
U\left(P_{n}, f\right)=\sum_{k=1}^{n} \frac{b-a}{n}\left(a+k \cdot \frac{b-a}{n}\right)^{2}=a^{2}(b-a)+(b-a)^{3} \frac{(n+1)(2 n+1)}{6 n^{2}}+a(b-a)^{2} \frac{n+1}{n} .
$$

Similarly, $L\left(P_{n}, f\right)=\sum_{k=0}^{n-1} \frac{b-a}{n}\left(a+k \cdot \frac{b-a}{n}\right)^{2}=a^{2}(b-a)+(b-a)^{3} \frac{(n-1)(2 n-1)}{6 n^{2}}+a(b-a)^{2} \frac{n-1}{n}$. So $U\left(P_{n}, f\right)-L\left(P_{n}, f\right)=\frac{(b-a)\left(b^{2}-a^{2}\right)}{n} \rightarrow 0$ as $n \rightarrow \infty$, implying $f \in \mathcal{R}$. Then $\int_{a}^{b} f(x) d x=\inf _{n} U\left(P_{n}, f\right)=$ $\sup _{n} L\left(P_{n}, f\right)=\frac{b^{3}-a^{3}}{3}$. Note that we assume $b>a \geq 0$ so that $f$ is monotonically increasing, $M_{i}=f\left(x_{i}\right)$, and $m_{i}=f\left(x_{i-1}\right)$. Convince yourself this assumption is valid by the continuity of $f$ as the mesh $\left\|P_{n}\right\|=\frac{1}{n} \rightarrow 0$.

## 2

Problem. Assume $f:[a, b] \rightarrow \mathbb{R}$ satisfies $f \in \mathcal{R}(\alpha)$. Prove that $f^{2} \in \mathcal{R}(\alpha)$.
Proof. Let $\epsilon>0$ and $P$ be a partition such that $\sum_{i}\left(M_{i}-m_{i}\right) \Delta \alpha_{i}<\frac{\epsilon}{2 M}$, where $M=\sup _{x \in[a, b]}|f(x)|$. Observe that $\sup _{x \in\left[x_{i-1}, x_{i}\right]}\left|f(x)^{2}\right|=\sup _{x \in\left[x_{i-1}, x_{i}\right]}|f(x)|^{2}=\left(\sup _{x \in\left[x_{i-1}, x_{i}\right]}|f(x)|\right)^{2}=M_{i}^{2}$ and similarly $\inf _{x \in\left[x_{i-1}, x_{i}\right]}\left|f(x)^{2}\right|=m_{i}^{2}$. So

$$
U\left(P, f^{2}\right)-L\left(P, f^{2}\right)=\sum_{i}\left(M_{i}^{2}-m_{i}^{2}\right) \Delta \alpha_{i} \leq 2 M \sum_{i}\left(M_{i}-m_{i}\right) \Delta \alpha_{i}<\epsilon,
$$

implying $f^{2} \in \mathcal{R}(\alpha)$.

