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6.2

Problem. Suppose f ≥ 0, f is continuous on [a,b], and
∫ b

a f (x)d x = 0. Prove that f (x) = 0 for all
x ∈ [a,b].

Proof. Suppose on the contrary that there exists x ∈ [a,b] such that f (x) > 0. By continuity,

there exists δ> 0 such that | f (x)− f (y)| < f (x)
2 for all y ∈ (x −δ, x +δ). Refine δ so that (x −δ, x +

δ) ⊂ [a,b]. Then infy∈[x−δ/2,x+δ/2] f (y) ≥ f (x)
2 . Let Q = {a, x −δ/2, x +δ/2,b}. Since f ≥ 0,∫ b

a
f = sup

P
L(P, f ) ≥ L(Q, f ) ≥ δ · f (x)

2
> 0,

contradiction.

Remark. Note how the continuity hypothesis is used. If f is not assumed to be continuous, we
could take f to be 1 at a single point and 0 elsewhere as in Exercise 6.1.

■

6.5

Problem. Suppose f is bounded real function on [a,b], and f 2 ∈R on [a,b]. Does it follow that
f ∈R? Does the answer change if we assume that f 3 ∈R?

Proof. Consider the function f (x) =
{

1 x ∈Q∩ [a,b]

−1 x 6∈Q∩ [a,b]
. f 2 ≡ 1 on [a,b] so f 2 ∈ R and

∫
f 2 =

b −a. However, f 6∈R as U (P, f ) = b −a and L(P, f ) =−1 for all partition P . Now assume f 3 ∈R.
Then f = φ( f 3), where φ : R→ R given by x 7→ 3

p
x. Since φ is continuous, f ∈ R by Theorem

6.11.

Remark. Note that f 2 ∈ R is not enough to conclude f ∈ R because the function x 7→ x2 is not
injective so has no continuous inverse on R.

■
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6.8

Problem. Assume that f ≥ 0 and f decreases monotonically on [1,∞). Prove that
∫ ∞

1 f (x)d x
converges iff

∑∞
n=1 f (n) converges.

Proof. Let n ∈N and Pn = {1,2, · · · ,n}. Since f decreases monotonically on [1,∞),

L(Pn , f ) =
n∑

k=2
f (k) ≤

∫ n

1
f (x)d x ≤U (Pn , f ) =

n−1∑
k=1

f (k).

It follows from f ≥ 0 that
n∑

k=2
f (k) ≤

∫ z

1
f (x)d x ≤

n∑
k=1

f (k)

for n ≤ z < n +1. Hence the conclusion. ■

6.11

Problem. Letα be a fixed increasing function on [a,b]. For u ∈R(α), define ||u||2 =
{∫ b

a |u|2dα
}1/2

.

Suppose f , g ,h ∈R(α), and prove the triangle inequality

|| f −h||2 ≤ || f − g ||2 +||g −h||2.

Proof. It suffices to prove || f + g ||2 ≤ || f ||2 + ||g ||2 for f , g ∈ R(α). Define an inner product on
the vector space R(α) by the map R(α)×R(α) → R by 〈 f , g 〉 = ∫ b

a f g dα. Verify that this map is
an inner product, i.e. the following holds for all a,b ∈R, f , g ,h ∈R(α)

• 〈a f +bg ,h〉 = a〈 f ,h〉+b〈g ,h〉
• 〈g , f 〉 = 〈 f , g 〉
• 〈 f , f 〉 ≥ 0 for all f ∈R(α) and 〈 f , f 〉 = 0 iff f = 0.

Observe that || f ||2 = √〈 f , f 〉. The proposition below shows any vector space with an inner
product with the above axioms satisfies the Cauchy-Schwarz inequality and the triangle inequality
is a consequence of Cauchy-Schwarz:

|| f + g ||22 = 〈 f + g , f + g 〉
= || f ||22 +2〈 f , g 〉+ ||g ||22
≤ || f ||22 +2|| f ||2||g ||2 +||g ||22
= (|| f ||2 +||g ||2)2.

■
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Proposition. |〈x, y〉| ≤ ||x||||y || with equality iff x and y are linearly dependent.

Proof. Assume 〈x, y〉 6= 0. Let α = sign〈x, y〉 ∈ {±1} and z = αy , so that 〈x, z〉 = 〈z, x〉 = |〈x, y〉|.
For t ∈Rwe have

0 ≤ 〈x − t z, x − t z〉 = ||x||2 + t 2||y ||2 −2t |〈x, y〉|
= 1

||y ||2
(

t 2 − 2|〈x, y〉|
||y ||2 t

)
+||x||2

= ||y ||2
(

t − |〈x, y〉|
||y ||2

)2

− |〈x, y〉|2
||y ||2 +||x||2

The expression on the right is a quadratic function of t whose absolute minimum occurs at
t = ||y ||−2|〈x, y〉|. Setting t equal to the absolute minimum, we obtain

0 ≤ ||x − t z||2 = ||x||2 −||y ||−2|〈x, y〉|2

with equality iff x = t z =αt y . ■
Remark. I lied. R(α) with the inner product defined above is ALMOST an inner product space.
Which axiom does not hold? (I told you to verify.) Even though R(α) is not an inner product
space, the part of axioms that it fails to satisfy does not affect the proof of the Cauchy-Schwarz
inequality. However, the statement that equality iff linearly dependent does not hold for R(α).

6.12

Problem. Suppose f ∈R(α) and ε > 0. Prove that there exists a continuous function g on [a,b]
such that || f − g ||2 < ε.

Proof. Let ε > 0 and M = sup | f (x)|. Since f ∈ R(α), there exists P = {a = x0, · · · , xn = b} such

that U (P, f ,α)−L(P, f ,α) =∑
i (Mi −mi )∆αi < ε2

2M . Let g be the piecewise linear function g (t ) =
xi−t
∆xi

f (xi−1)+ t−xi−1
∆xi

f (xi ) for t ∈ [xi−1, xi ], i.e. g is the line segment connecting f (xi−1) and f (xi )
for 1 ≤ i ≤ n. So g is continuous. It is easy to see that supx∈[xi−1,xi ] | f (x)− g (x)| ≤ Mi −mi and
the infinmum is 0. So, L(P, | f − g |2,α) = 0 for all P and

U (P, | f − g |2,α) =∑
i

sup
x∈[xi−1,xi ]

| f (x)− g (x)|2∆αi

≤∑
i

(Mi −mi )2∆αi

≤ 2M
∑

i
(Mi −mi )∆αi

< ε2.

Hence || f − g ||22 ≤U (P, | f − g |2,α) < ε2. Therefore, || f − g ||2 < ε. ■
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1

Problem. Consider f : [a,b] → R defined by f (x) = x2. Compute
∫ b

a f (x)d x using only the
definition of the integral.

Proof. Assume b > a ≥ 0. First we need to show f ∈ R on [a,b]. Consider the partition Pn =
{a, a + b−a

n , · · · ,b}. By computation,

U (Pn , f ) =
n∑

k=1

b −a

n

(
a +k · b −a

n

)2

= a2(b −a)+ (b −a)3 (n +1)(2n +1)

6n2
+a(b −a)2 n +1

n
.

Similarly, L(Pn , f ) = ∑n−1
k=0

b−a
n

(
a +k · b−a

n

)2 = a2(b − a)+ (b − a)3 (n−1)(2n−1)
6n2 + a(b − a)2 n−1

n . So

U (Pn , f )−L(Pn , f ) = (b−a)(b2−a2)
n → 0 as n →∞, implying f ∈R. Then

∫ b
a f (x)d x = infn U (Pn , f ) =

supn L(Pn , f ) = b3−a3

3 . Note that we assume b > a ≥ 0 so that f is monotonically increasing,
Mi = f (xi ), and mi = f (xi−1). Convince yourself this assumption is valid by the continuity of f
as the mesh ||Pn || = 1

n → 0. ■
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Problem. Assume f : [a,b] →R satisfies f ∈R(α). Prove that f 2 ∈R(α).

Proof. Let ε> 0 and P be a partition such that
∑

i (Mi−mi )∆αi < ε
2M , where M = supx∈[a,b] | f (x)|.

Observe that supx∈[xi−1,xi ] | f (x)2| = supx∈[xi−1,xi ] | f (x)|2 = (
supx∈[xi−1,xi ] | f (x)|)2 = M 2

i and similarly
infx∈[xi−1,xi ] | f (x)2| = m2

i . So

U (P, f 2)−L(P, f 2) =∑
i

(M 2
i −m2

i )∆αi ≤ 2M
∑

i
(Mi −mi )∆αi < ε,

implying f 2 ∈R(α). ■
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