MATH 140B - Winter 2019

Partial solutions to Homework 4

Exercise 6.13

(a) Following the hint one gets

$$
\begin{aligned}
f(x) & <\frac{\cos \left(x^{2}\right)}{2 x}-\frac{\cos \left((x+1)^{2}\right)}{2(x+1)}-\int_{x^{2}}^{(x+1)^{2}} \frac{1}{4 u^{3 / 2}} d u \\
& =\frac{\cos \left(x^{2}\right)}{2 x}-\frac{\cos \left((x+1)^{2}\right)}{2(x+1)}+\frac{1}{2 x}-\frac{1}{2(x+1)} \\
& \leq \frac{1}{x}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
f(x) & >\frac{\cos \left(x^{2}\right)}{2 x}-\frac{\cos \left((x+1)^{2}\right)}{2(x+1)}+\int_{x^{2}}^{(x+1)^{2}} \frac{1}{4 u^{3 / 2}} d u \\
& \geq-\frac{1}{x}
\end{aligned}
$$

(b) From part (a) the formula follows immediately with

$$
r(x)=\frac{\cos \left((x+1)^{2}\right)}{x+1}-\frac{x}{2} \int_{x^{2}}^{(x+1)^{2}} \frac{\cos (u)}{4 u^{3 / 2}} d u
$$

Integrating the last expression by parts again, will give the bound $|r(x)|<\frac{c}{x}$ for some constant c.
(c) By (b), since $r(x) \rightarrow 0$ as $x \rightarrow \infty$, the upper and lower limits of $x f(x)$ are the same as those for $\frac{\cos \left(x^{2}\right)-\cos \left((x+1)^{2}\right)}{2}=\sin \left(x^{2}+x+1 / 2\right) \sin (x+1 / 2)=\sin \left(y^{2}+1 / 4\right) \sin (y)$ where we put $y=x+1 / 2$. Obviously this expression takes values in $[-1,1]$, and the claim is that the upper and lower bounds are ± 1. The value would be exactly 1 if we find a point y_{0} such that $y_{0}=\frac{\pi}{2}+2 n \pi$ and $y_{0}^{2}+1 / 4=\frac{\pi}{2}+2 k \pi$ for some $k, n \in \mathbb{N}$. This will not exactly be true, but we can find y 's that come as close as we want.
[Intuitively, this is true because sin is periodic and $y^{2}+1 / 4$ grows at an increasingly faster rate than y. So taking a small interval close to the value of y we want, going far enough, the corresponding interval in the range of $y^{2}+1 / 4$ will be bigger than 2π, and so we can take a value where also $y^{2}+1 / 4$ is close to what we want.]
To give an outline, fix $\varepsilon>0$ and N big enough so that the image of the interval of length ε around $\frac{\pi}{2}+2 N \pi$ under the map $y \mapsto y^{2}+1 / 4$ is an interval of length at least 2π and such that $r(y)<\varepsilon$ on that interval. Hence we can take y_{0} such that $\left|y_{0}-\frac{\pi}{2}-2 N \pi\right|<\varepsilon$ and $y_{0}^{2}+1 / 4=\frac{\pi}{2}+2 K \pi$ for some $K \in \mathbb{N}$. Then by the above, $\left|y_{0} f\left(y_{0}\right)-1\right|<2 \varepsilon$. Hence the upper limit of $x f(x)$ is 1 . Similarly, the lower limit is -1 .
(d) We claim the integral converges. For this, let $x>0$, denote $N=[x]$, and calculate

$$
\begin{aligned}
\int_{0}^{x} \sin \left(t^{2}\right) d t & =\int_{0}^{N} \sin \left(t^{2}\right) d t+\int_{N}^{x} \sin \left(t^{2}\right) d t \\
& =\sum_{i=0}^{N-1} f(i)+\int_{N}^{x} \sin \left(t^{2}\right) d t \\
& \stackrel{(b)}{=} f(0)+\frac{\cos (1)}{2}-\frac{\cos \left(N^{2}\right)}{2(N-1)}+\sum_{i=1}^{N-1} \frac{r(i)}{2 i}+\sum_{i=1}^{N-1} \frac{\cos \left(i^{2}\right)}{2 i(i-1)}+\int_{N}^{x} \sin \left(t^{2}\right) d t
\end{aligned}
$$

Letting x (and hence N) go to infinity, the above obviously converges since $|r(i)|<\frac{c}{i}$ and $\left|\int_{N}^{x} \sin \left(t^{2}\right) d t\right|<\frac{d}{N}$ for some constant d by the same calculation as in (a).

Remark. I apologize for any typos that might be left in the above calculations.

Exercise 6.15 The first part is a direct integration by parts, the second part follows from applying Cauchy-Schwarz to the first part. Since equality in the Cauchy-Schwarz inequality only happens when the two functions are linearly dependent, equality in this case can only happen if there exists $\lambda \in \mathbb{R}$ such that $f^{\prime}(x)=\lambda x f(x)$ for all x. Using $f(a)=f(b)=0$, an application of Rolle's theorem shows that this cannot happen.

Exercise 6.17 First of all note that $\alpha \in \mathfrak{R}$ (being monotone) and $g \in \mathfrak{R}$ (being continuous), hence $\alpha g \in \mathfrak{R}$. Now the result follows directly from the hint and the definition of the integral.

Exercise 6.18 Note that $e^{i t}=\cos (t)+i \sin (t)$ has period 2π. We claim all three functions have range $\left\{z \in \mathbb{C}||z|=1\}\right.$. As t ranges from 0 to 2π, this is clear for γ_{1} and γ_{2}. For γ_{3} it follows from the observation that, denoting $f(t)=2 \pi t \sin (1 / t), f(6 / \pi)=6, f(2 / 3 \pi)=-4 / 3$ and $6+4 / 3>2 \pi$. We can now calculate

$$
\begin{aligned}
& l\left(\gamma_{1}\right)=\int_{0}^{2 \pi}\left|\gamma_{1}^{\prime}(t)\right| d t=\int_{0}^{2 \pi} 1 d t=2 \pi \\
& l\left(\gamma_{2}\right)=\int_{0}^{2 \pi}\left|\gamma_{2}^{\prime}(t)\right| d t=\int_{0}^{2 \pi} 2 d t=4 \pi
\end{aligned}
$$

and

$$
\begin{aligned}
l\left(\gamma_{3}\right) & =\int_{0}^{2 \pi}\left|\gamma_{3}^{\prime}(t)\right| d t \\
& =\int_{0}^{2 \pi} 2 \pi\left|\sin (1 / t)-\frac{\cos (1 / t)}{t}\right| d t \\
& \geq 2 \pi \int_{0}^{2 \pi}\left|\frac{\cos (1 / t)}{t}\right| d t-4 \pi^{2} \\
& =2 \pi \int_{\frac{1}{2 \pi}}^{\infty}\left|\frac{\cos (u)}{u}\right| d u-4 \pi^{2}
\end{aligned}
$$

Since this last integral diverges, γ_{3} is not rectifiable.
Exercise 6.19 This follows from the fact that ϕ has a continuous 1-1 inverse. For the rectifiability, apply the change of variables theorem.

Extra problem 1. Assume f is not continuous at $x_{0} \in(a, b)$, i.e.

$$
\exists \varepsilon>0, \forall \delta>0, \exists y \in(a, b) \text { such that }\left|x_{0}-y\right| \leq \delta \text { and }\left|f\left(x_{0}\right)-f(y)\right| \geq \varepsilon
$$

Now choose an α with a jump discontinuity of say height 1 at x_{0}, e.g. $\alpha(x)=0$ if $x<x_{0}, \alpha(x)=1$ if $x>x_{0}$, and $\alpha\left(x_{0}\right)=1 / 2$. Then given any partition P we can calculate

$$
\begin{aligned}
U(P, f, \alpha)-L(P, f, \alpha) & =\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta\left(\alpha_{i}\right) \\
& =\sum_{i=1 ; i \neq i_{0}}^{n}\left(M_{i}-m_{i}\right) \Delta\left(\alpha_{i}\right)+\left(M_{i_{0}}-m_{i_{0}}\right) \Delta\left(\alpha_{i_{0}}\right) \\
& \geq\left(M_{i_{0}}-m_{i_{0}}\right) \Delta\left(\alpha_{i_{0}}\right)
\end{aligned}
$$

where i_{0} is the part of the partition containing x_{0}. By the assumption on f, we have $M_{i_{0}}-m_{i_{0}} \geq \varepsilon$ and by the assumption on α we have $\Delta\left(\alpha_{i_{0}}\right) \geq 1 / 2$. Hence

$$
U(P, f, \alpha)-L(P, f, \alpha) \geq \frac{\varepsilon}{2}
$$

for every partition P. Hence $f \notin \mathfrak{R}(\alpha)$.
Extra problem 2. Since f is continuous, Theorem 6.20 tells us that $F(x)=\int_{a}^{x} f(t) d t$ is differentiable and $F^{\prime}=f$. Now the statement follows by applying the mean value theorem to F.

