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Partial solutions to Homework 4

Exercise 6.13

(a) Following the hint one gets

f(x) <
cos(x2)

2x
− cos((x+ 1)2)

2(x+ 1)
−
∫ (x+1)2

x2

1

4u3/2
du

=
cos(x2)

2x
− cos((x+ 1)2)

2(x+ 1)
+

1

2x
− 1

2(x+ 1)

≤ 1

x
.

Similarly,

f(x) >
cos(x2)

2x
− cos((x+ 1)2)

2(x+ 1)
+

∫ (x+1)2

x2

1

4u3/2
du

≥ −1

x
.

(b) From part (a) the formula follows immediately with

r(x) =
cos((x+ 1)2)

x+ 1
− x

2

∫ (x+1)2

x2

cos(u)

4u3/2
du.

Integrating the last expression by parts again, will give the bound |r(x)| < c
x for some

constant c.
(c) By (b), since r(x) → 0 as x → ∞, the upper and lower limits of xf(x) are the same as

those for cos(x2)−cos((x+1)2)
2 = sin(x2 + x+ 1/2) sin(x+ 1/2) = sin(y2 + 1/4) sin(y) where we

put y = x+ 1/2. Obviously this expression takes values in [−1, 1], and the claim is that the
upper and lower bounds are ±1. The value would be exactly 1 if we find a point y0 such
that y0 = π

2 + 2nπ and y20 + 1/4 = π
2 + 2kπ for some k, n ∈ N. This will not exactly be true,

but we can find y’s that come as close as we want.
[Intuitively, this is true because sin is periodic and y2+1/4 grows at an increasingly
faster rate than y. So taking a small interval close to the value of y we want, going
far enough, the corresponding interval in the range of y2 + 1/4 will be bigger than
2π, and so we can take a value where also y2 + 1/4 is close to what we want.]

To give an outline, fix ε > 0 and N big enough so that the image of the interval of length ε
around π

2 + 2Nπ under the map y 7→ y2 + 1/4 is an interval of length at least 2π and such
that r(y) < ε on that interval. Hence we can take y0 such that |y0 − π

2 − 2Nπ| < ε and

y20 + 1/4 = π
2 + 2Kπ for some K ∈ N. Then by the above, |y0f(y0) − 1| < 2ε. Hence the

upper limit of xf(x) is 1. Similarly, the lower limit is −1.
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(d) We claim the integral converges. For this, let x > 0, denote N = [x], and calculate∫ x

0
sin(t2) dt =

∫ N

0
sin(t2) dt+

∫ x

N
sin(t2) dt

=
N−1∑
i=0

f(i) +

∫ x

N
sin(t2) dt

(b)

= f(0) +
cos(1)

2
− cos(N2)

2(N − 1)
+
N−1∑
i=1

r(i)

2i
+
N−1∑
i=1

cos(i2)

2i(i− 1)
+

∫ x

N
sin(t2) dt

Letting x (and hence N) go to infinity, the above obviously converges since |r(i)| < c
i and∣∣∫ x

N sin(t2) dt
∣∣ < d

N for some constant d by the same calculation as in (a).

Remark. I apologize for any typos that might be left in the above calculations.

Exercise 6.15 The first part is a direct integration by parts, the second part follows from applying
Cauchy-Schwarz to the first part. Since equality in the Cauchy-Schwarz inequality only happens
when the two functions are linearly dependent, equality in this case can only happen if there exists
λ ∈ R such that f ′(x) = λxf(x) for all x. Using f(a) = f(b) = 0, an application of Rolle’s theorem
shows that this cannot happen.

Exercise 6.17 First of all note that α ∈ R (being monotone) and g ∈ R (being continuous), hence
αg ∈ R. Now the result follows directly from the hint and the definition of the integral.

Exercise 6.18 Note that eit = cos(t) + i sin(t) has period 2π. We claim all three functions have
range {z ∈ C | |z| = 1}. As t ranges from 0 to 2π, this is clear for γ1 and γ2. For γ3 it follows from
the observation that, denoting f(t) = 2πt sin(1/t), f(6/π) = 6, f(2/3π) = −4/3 and 6 + 4/3 > 2π.
We can now calculate

l(γ1) =

∫ 2π

0
|γ′1(t)| dt =

∫ 2π

0
1 dt = 2π,

l(γ2) =

∫ 2π

0
|γ′2(t)| dt =

∫ 2π

0
2 dt = 4π

and

l(γ3) =

∫ 2π

0
|γ′3(t)| dt

=

∫ 2π

0
2π

∣∣∣∣sin(1/t)− cos(1/t)

t

∣∣∣∣ dt
≥ 2π

∫ 2π

0

∣∣∣∣cos(1/t)

t

∣∣∣∣ dt− 4π2

= 2π

∫ ∞
1
2π

∣∣∣∣cos(u)

u

∣∣∣∣ du− 4π2

Since this last integral diverges, γ3 is not rectifiable.

Exercise 6.19 This follows from the fact that φ has a continuous 1-1 inverse. For the rectifiability,
apply the change of variables theorem.
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Extra problem 1. Assume f is not continuous at x0 ∈ (a, b), i.e.

∃ε > 0, ∀δ > 0,∃y ∈ (a, b) such that |x0 − y| ≤ δ and |f(x0)− f(y)| ≥ ε.
Now choose an α with a jump discontinuity of say height 1 at x0, e.g. α(x) = 0 if x < x0, α(x) = 1
if x > x0, and α(x0) = 1/2. Then given any partition P we can calculate

U(P, f, α)− L(P, f, α) =

n∑
i=1

(Mi −mi)∆(αi)

=
n∑

i=1;i 6=i0

(Mi −mi)∆(αi) + (Mi0 −mi0)∆(αi0)

≥ (Mi0 −mi0)∆(αi0),

where i0 is the part of the partition containing x0. By the assumption on f , we have Mi0 −mi0 ≥ ε
and by the assumption on α we have ∆(αi0) ≥ 1/2. Hence

U(P, f, α)− L(P, f, α) ≥ ε

2

for every partition P . Hence f /∈ R(α).

Extra problem 2. Since f is continuous, Theorem 6.20 tells us that F (x) =
∫ x
a f(t) dt is differ-

entiable and F ′ = f . Now the statement follows by applying the mean value theorem to F .
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