Solution to Homework 5 Math 140B

Haiyu Huang

February 15, 2019

Disclaimer: The solution may contain errors or typos so use at your own risk.

7.1

Problem. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.

Proof. Let $\{f_n\}$ be a uniformly convergent sequence of functions such that $||f_n||_u \leq M_n$. In particular, $\{f_n\}$ is Cauchy so there exists N such that $||f_n - f_m||_u < 1$ for $m, n \geq N$. Then $||f_n - f_N||_u < 1$ for all $n \geq N$. So for all $n \geq N$, $||f_n||_u \leq ||f_N||_u + ||f_n - f_N||_u < M_N + 1$. Let $M = \max\{M_1, \dots, M_N\} + 1$. It follows that $||f_n||_u \leq M$ for all n.

7.4

Problem. Consider $f(x) = \sum_{n=1}^{\infty} \frac{1}{1+n^2x}$. For what values of x does the series converge absolutely? On what intervals does it converge uniformly? On what intervals does it fail to converge uniformly? Is f continuous wherever the series converges? Is f bounded?

Proof. First, f(x) is not defined at $x = -\frac{1}{n^2}$, $n \in \mathbb{N}$. It is also obvious that f(x) does not converge at x = 0. f converges uniformly and absolutely on $[\epsilon, \infty)$ for any $\epsilon > 0$ by Weierstrass *M*-test:

$$\left|\frac{1}{1+n^2x}\right| \le \frac{1}{1+n^2\epsilon} \le \frac{1}{n^2\epsilon}$$

and $\sum \frac{1}{n^2 \epsilon} = \frac{1}{\epsilon} \sum \frac{1}{n^2} = \frac{\pi^2}{6\epsilon} < \infty$. Similarly, *f* converges uniformly on $(-\infty, -\epsilon]$ whenever *f* is defined: for if $\epsilon \ge \frac{2}{n^2}$ or equivalently, $n \ge \sqrt{\frac{2}{\epsilon}}$, then

$$\left|\frac{1}{1+n^2x}\right| \leq \frac{1}{|n^2x|-1} \leq \frac{1}{n^2\epsilon - 1} \leq \frac{1}{n^2\epsilon - n^2\epsilon/2} = \frac{2}{n^2\epsilon}$$

Hence again f is uniformly convergent by Weierstrass M-test as the behavior of the first finitely many terms of the series does not affect the convergence. However, f does not converge uniformly

on any interval containing 0 or with 0 as an endpoint. It suffices to show f does not converge uniformly on $(0, \epsilon)$ and $(-\epsilon, 0)$. First observe that f is unbounded:

$$f\left(\frac{1}{m^2}\right) = \sum_{n=1}^{\infty} \frac{1}{1 + n^2/m^2} \ge \sum_{n=1}^{m} \frac{1}{1 + (n/m)^2} \ge \sum_{n=1}^{m} \frac{1}{2} = \frac{m}{2}.$$

Since the sequence of partial sums $\sum_{n=1}^{m} \frac{1}{1+n^2x} \leq \sum_{n=1}^{m} 1 \leq m$ is bounded on $(0,\epsilon)$, if the series converges uniformly, then *f* would be bounded by Exercise 7.1. On $(-\epsilon, 0)$, let *N* be arbitrary. There exists n > N such that $x = -\frac{1}{2n^2} \in (-\epsilon, 0)$ with $\frac{1}{1+n^2x} = 2$. So the series is not Cauchy and hence is not convergent. Since the sequence of partial sums are continuous functions and for arbitrary ϵ the series converges uniformly on $(-\infty, -\epsilon) \cup (\epsilon, \infty)$ wherever it is defined, f is continuous except at 0 and $\frac{1}{n^2}$, $n \in \mathbb{N}$ by the uniform limit theorem.

7.5

Problem. Let $f_n(x) = \begin{cases} 0 & x < \frac{1}{n+1} \\ \sin^2 \frac{\pi}{x} & \frac{1}{n+1} \le x \le \frac{1}{n} \end{cases}$ Show that $\{f_n\}$ converges to a continuous function, $0 & \frac{1}{n} < x \end{cases}$ but not uniformly. Use the series $\sum f_n$ to show that absolute convergence, even for all x, does not

imply uniform convergence.

Proof. On $(-\infty, 0] \cup [1, \infty)$, $f_n \equiv 0$. On (0, 1), $f_n(x) = 0$ for n sufficiently large $(n > \frac{1}{x})$. So $f_n \to 0$ pointwise. Let $x_n = \frac{1}{n+\frac{1}{2}} \in [\frac{1}{n+1}, \frac{1}{n}]$ with $f_n(x_n) = \sin^2(\pi(n+\frac{1}{2})) = 1$. Hence $f_n \to 0$ not uniformly. $\sum |f_n| = \sum f_n = \begin{cases} 0 & x \in (-\infty, 0] \cup [1, \infty) \\ \sin^2 \frac{\pi}{x} & x \in (0, 1) \end{cases}$. So $\sum f_n$ converges absolutely for every x. But the

series $\sum f_n$ does not converge uniformly on any interval that contains 0 by the uniform limit theorem as $\sum f_n$ is not continuous at 0. Also $\sum f_n$ does not converge uniformly on (0,1) as $\sum_{k=m}^{n} f_k = \begin{cases} \sin^2 \frac{\pi}{x} & \frac{1}{n+1} \le x \le \frac{1}{m} \\ 0 & \text{otherwise} \end{cases}$

7.6

Problem. Prove that the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^2+n}{n^2}$ converges uniformly in every bounded interval, but does not converge absolutely for any value of x.

Proof.

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2} = \sum_{n=1}^{\infty} (-1)^n \frac{x^2}{n^2} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n} = \ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^n x^2}{n^2}.$$

On bounded intervals $[a, b] \subset [-M, M]$,

$$\left|\frac{(-1)^n x^2}{n^2}\right| = \frac{x^2}{n^2} \le \frac{M^2}{n^2}$$

and $\sum \frac{M^2}{n^2} = M \sum \frac{1}{n^2} < \infty$. Hence by Weierstrass *M*-test the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^2}{n^2}$ converges uniformly in every bounded interval. It is easy to check the sum of two uniformly convergent sequences is uniformly convergent. It follows that $\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2}$ converges uniformly in every bounded interval. However,

$$\sum_{n=1}^{\infty} \left| (-1)^n \frac{x^2 + n}{n^2} \right| = \sum_{n=1}^{\infty} \frac{x^2 + n}{n^2} \ge \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

so the series does not converge absolutely for any *x*.

7.7

Problem. For $n = 1, 2, 3, \dots, x \in \mathbb{R}$, put

$$f_n(x) = \frac{x}{1 + nx^2}.$$

Show that $\{f_n\}$ converges uniformly to a function f, and that the equation $f'(x) = \lim f'_n(x)$ is correct if $x \neq 0$, but false if x = 0.

Proof. Note that $f_n \to 0$ pointwise. To show uniform convergence, note that $1 + nx^2 - 2\sqrt{n}|x| = (1 - \sqrt{n}|x|)^2 \ge 0$. It follows that for $x \ne 0$

$$|f_n(x)| = \left|\frac{x}{1+nx^2}\right| \le \frac{|x|}{2\sqrt{n}|x|} = \frac{1}{2\sqrt{n}} \to 0$$

as $n \to \infty$. For x = 0, $f_n(0) = 0$. So $f_n \to 0$ uniformly. $f'_n(x) = \frac{1 - nx^2}{(1 + nx^2)^2}$. It is easy to see $f'_n(x) \to 0$ if $x \neq 0$ and $f'_n(0) = 1$ for all $n \in \mathbb{N}$.

7.8

Problem. If I(x) = 1 for x > 0 and I(x) = 0 for $x \le 0$, $\{x_n\}$ is a sequence of distinct points of (a, b), and if $\sum |c_n|$ converges, prove that the series

$$f(x) = \sum_{n=1}^{\infty} c_n I(x - x_n) \qquad a \le x \le b$$

converges uniformly, and that f is continuous for every $x \neq x_n$.

Proof. It follows immediately from Weierstrass *M*-test with $M_n = |c_n|$. The sequence of partial sums are continuous for all $x \neq x_n$ so *f* is continuous for every $x \neq x_n$ by the uniform limit theorem.

7.9

Problem. Let $\{f_n\}$ be a sequence of continuous functions which converges uniformly to a function f on a set E. Prove that $\lim f_n(x_n) = f(x)$ for every sequence of points $x_n \in E$ such that $x_n \to x$, and $x \in E$. Is the converse of this true?

Proof. This follows immediately from the continuity of *f* as a consequence of the uniform limit theorem:

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)| \le ||f_n - f||_u + |f(x_n) - f(x)|.$$

The converse is if $\{f_n\}$ is a sequence of continuous functions and $\lim f_n(x_n) = f(x)$ for every $x_n \to x \in E$, then $f_n \to f$ uniformly, which is not true in general. Consider the growing steeple

function $f_n: (0,\infty) \to \mathbb{R}$ given by $f_n(x) = \begin{cases} n^2 x & x \in (0,\frac{1}{n}], \\ 2n-n^2 x & x \in [\frac{1}{n},\frac{2}{n}], \\ 0 & x \in [\frac{2}{n},\infty). \end{cases}$

uniformly $(f_n(\frac{1}{n}) = n)$. It is easy to check for every $x_n \to x$, $\lim f_n(x_n) = f(x) = 0$ (Check!).

7.10

Problem. Consider the function $f(x) = \sum_{n=1}^{\infty} \frac{(nx)}{n^2}$, $x \in \mathbb{R}$. Find all discontinuities of f, and show that they form a countable dense set. Show that f is nevertheless Riemann-integrable on every bounded interval.

Proof. First $0 \le \frac{(nx)}{n^2} \le \frac{1}{n^2}$ so $f(x) = \sum_{n=1}^{\infty} \frac{(nx)}{n^2}$ is well-defined for $x \in \mathbb{R}$. Moreover, by Weierstrass *M*-test, f(x) converges uniformly. By the corollary after Theorem 7.16, f can be integrated term by term, i.e.

$$\int_{a}^{b} f dx = \sum_{n=1}^{\infty} \int_{a}^{b} \frac{(nx)}{n^2} dx.$$

It is easy to see $\frac{(nx)}{n^2} \in \mathbb{R}$ on [a, b] for every $n \in \mathbb{N}$. So $f \in \mathbb{R}$ on every bounded interval. However, f is discontinuous at all rational numbers. Note that $f(x+1) = \sum_{n=1}^{\infty} \frac{(nx+n)}{n^2} = \sum_{n=1}^{\infty} \frac{(nx)}{n^2} = f(x)$ so f is periodic with period 1. It suffices to prove f is discontinuous on $[0,1) \cap \mathbb{Q}$. If $x \in \mathbb{R} \setminus \mathbb{Q}$, $nx \in \mathbb{R} \setminus \mathbb{Q}$ for every $n \in \mathbb{N}$. But the function (\cdot) is continuous on $\mathbb{R} \setminus \mathbb{N}$. So (\cdot) is continuous at nx for every n and f is continuous on $\mathbb{R} \setminus \mathbb{Q}$ by the uniform limit theorem. Let $x = \frac{p}{q} \in [0,1) \cap \mathbb{Q}$, where p < q, $q \neq 0$. By the division theorem, n = kq + r for some unique $q, r \in \mathbb{Z}$, $0 \leq r < q$. q is the quotient and r is the remainder. Split the series according to the remainder, $f(x) = \sum_{r=0}^{q-1} f_r(x)$, where $f_0(x) = \sum_{k=1}^{\infty} \frac{(kqx)}{(kq)^2}$ and $f_r(x) = \sum_{k=0}^{\infty} \frac{((kq+r)x)}{(kq+r)^2}$ for $1 \leq r < q$. Since f(x) converges absolutely, this rearrangement is valid by Riemann rearrangement theorem. For $1 \leq r < q$, $(kq + r)x = (kq + r)\frac{p}{q} = kp + \frac{rp}{q} \notin \mathbb{Z}$ so (\cdot) is continuous at (kq + r)x and hence $f_1, f_2, \cdots, f_{q-1}$ are continuous at $\frac{p}{q}$ by the uniform limit theorem. However, $f_0(\frac{p}{q}) = \sum_{k=1}^{\infty} \frac{(pk)}{(kq)^2} = 0$. Choose $x_m \in (\frac{p-1/m}{q}, \frac{p}{q})$. As $m \to \infty, x_m \to \frac{p}{q}$. Then $p - \frac{1}{m} < qx_m < p$. This implies $(qx_m) > 1 - \frac{1}{m}$. It follows that

$$f_0(x_m) = \sum_{k=1}^{\infty} \frac{(kqx_m)}{(kq)^2} \ge \frac{(qx_m)}{q^2} \ge \frac{1}{q^2} \left(1 - \frac{1}{m}\right).$$

Hence $\liminf_{m\to\infty} f_0(x_m) \ge \frac{1}{q^2} > 0$, showing f_0 is discontinuous at $\frac{p}{q}$. Since $f = \sum_{r=0}^{q-1} f_r$, f is discontinuous at \mathbb{Q} .

7.12

Problem. Suppose g and f_n are defined on $(0,\infty)$, are Riemann-integrable on [t,T] whenever $0 < t < T < \infty$, $|f_n| \le g$, $f_n \to f$ uniformly on every compact subset of $(0,\infty)$, and $\int_0^\infty g(x) dx < \infty$. *Prove that*

$$\lim_{n \to \infty} \int_0^\infty f_n(x) dx = \int_0^\infty f(x) dx$$

Proof. Let $\epsilon > 0$. Note that $g \ge 0$. There exists $\alpha < \beta$ such that for all $y > \beta$, $x < \alpha$, $\int_y^\infty g dt < \epsilon$ and $\int_0^x g dt < \epsilon$. It is easy to see that for all $a < b < \alpha$, $\int_a^b g dt \le \int_0^\alpha g dt < \epsilon$ so for a fixed R > 0

$$\left|\int_{a}^{R} f_{n}dt - \int_{b}^{R} f_{n}dt\right| = \left|\int_{a}^{b} f_{n}dt\right| \leq \int_{a}^{b} |f_{n}|dt \leq \int_{a}^{b} gdt < \epsilon.$$

It follows that $\lim_{x\to 0} \int_x^R f_n dt$ exists. Similarly, $\lim_{y\to\infty} \int_r^y f_n dt$ exists for a fixed r > 0. It follows that $\int_0^\infty f_n dt$ converges for every $n \in \mathbb{N}$. Since $f_n \to f$ pointwise, $|f| \le g$. Similarly, $\int_0^\infty f dt$ converges. Then for $x < \alpha$, $y > \beta$, $f_n \to f$ uniformly on [x, y] so that $\left| \int_x^y f_n dt - \int_x^y f dt \right| \le ||f_n - f||_u (y - x) < \epsilon$ for *n* sufficiently large. Hence for sufficiently large *n*

$$\left| \int_0^\infty f_n dt - \int_0^\infty f dt \right| \le \left| \int_0^\infty f_n dt - \int_x^y f_n dt \right| + \left| \int_x^y f_n dt - \int_x^y f dt \right| + \left| \int_x^y f dt - \int_0^\infty f dt \right|$$
$$\le 2\epsilon + \epsilon + 2\epsilon$$
$$= 5\epsilon.$$