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Disclaimer: The solution may contain errors or typos so use at your own risk.

7.1

Problem. Prove that every uniformly convergent sequence of bounded functions is uniformly
bounded.

Proof. Let { fn} be a uniformly convergent sequence of functions such that || fn ||u ≤ Mn . In
particular, { fn} is Cauchy so there exists N such that || fn − fm ||u < 1 for m,n ≥ N . Then || fn −
fN ||u < 1 for all n ≥ N . So for all n ≥ N , || fn ||u ≤ || fN ||u + || fn − fN ||u < MN + 1. Let M =
max{M1, · · · , MN }+1. It follows that || fn ||u ≤ M for all n. ■

7.4

Problem. Consider f (x) =∑∞
n=1

1
1+n2x

. For what values of x does the series converge absolutely?
On what intervals does it converge uniformly? On what intervals does it fail to converge uniformly?
Is f continuous wherever the series converges? Is f bounded?

Proof. First, f (x) is not defined at x =− 1
n2 , n ∈N. It is also obvious that f (x) does not converge

at x = 0. f converges uniformly and absolutely on [ε,∞) for any ε> 0 by Weierstrass M-test:∣∣∣∣ 1

1+n2x

∣∣∣∣≤ 1

1+n2ε
≤ 1

n2ε

and
∑ 1

n2ε
= 1

ε

∑ 1
n2 = π2

6ε < ∞. Similarly, f converges uniformly on (−∞,−ε] whenever f is

defined: for if ε≥ 2
n2 or equivalently, n ≥

√
2
ε

, then∣∣∣∣ 1

1+n2x

∣∣∣∣≤ 1

|n2x|−1
≤ 1

n2ε−1
≤ 1

n2ε−n2ε/2
= 2

n2ε
.

Hence again f is uniformly convergent by Weierstrass M-test as the behavior of the first finitely
many terms of the series does not affect the convergence. However, f does not converge uniformly
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on any interval containing 0 or with 0 as an endpoint. It suffices to show f does not converge
uniformly on (0,ε) and (−ε,0). First observe that f is unbounded:

f

(
1

m2

)
=

∞∑
n=1

1

1+n2/m2
≥

m∑
n=1

1

1+ (n/m)2
≥

m∑
n=1

1

2
= m

2
.

Since the sequence of partial sums
∑m

n=1
1

1+n2x
≤ ∑m

n=1 1 ≤ m is bounded on (0,ε), if the series
converges uniformly, then f would be bounded by Exercise 7.1. On (−ε,0), let N be arbitrary.
There exists n > N such that x = − 1

2n2 ∈ (−ε,0) with 1
1+n2x

= 2. So the series is not Cauchy
and hence is not convergent. Since the sequence of partial sums are continuous functions and
for arbitrary ε the series converges uniformly on (−∞,−ε)∪ (ε,∞) wherever it is defined, f is
continuous except at 0 and 1

n2 ,n ∈N by the uniform limit theorem.
■

7.5

Problem. Let fn(x) =


0 x < 1

n+1

sin2 π
x

1
n+1 ≤ x ≤ 1

n

0 1
n < x

. Show that { fn} converges to a continuous function,

but not uniformly. Use the series
∑

fn to show that absolute convergence, even for all x, does not
imply uniform convergence.

Proof. On (−∞,0]∪ [1,∞), fn ≡ 0. On (0,1), fn(x) = 0 for n sufficiently large (n > 1
x ). So fn → 0

pointwise. Let xn = 1
n+ 1

2
∈ [ 1

n+1 , 1
n ] with fn(xn) = sin2

(
π(n + 1

2 )
)= 1. Hence fn → 0 not uniformly.

∑ | fn | = ∑
fn =

{
0 x ∈ (−∞,0]∪ [1,∞)

sin2 π
x x ∈ (0,1)

. So
∑

fn converges absolutely for every x. But the

series
∑

fn does not converge uniformly on any interval that contains 0 by the uniform limit
theorem as

∑
fn is not continuous at 0. Also

∑
fn does not converge uniformly on (0,1) as∑n

k=m fk =
{

sin2 π
x

1
n+1 ≤ x ≤ 1

m

0 otherwise
. ■

7.6

Problem. Prove that the series
∑∞

n=1(−1)n x2+n
n2 converges uniformly in every bounded interval,

but does not converge absolutely for any value of x.

Proof.
∞∑

n=1
(−1)n x2 +n

n2
=

∞∑
n=1

(−1)n x2

n2
+

∞∑
n=1

(−1)n

n
= ln2+

∞∑
n=1

(−1)n x2

n2
.

On bounded intervals [a,b] ⊂ [−M , M ],∣∣∣∣ (−1)n x2

n2

∣∣∣∣= x2

n2
≤ M 2

n2
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and
∑ M 2

n2 = M
∑ 1

n2 <∞. Hence by Weierstrass M-test the series
∑∞

n=1(−1)n x2

n2 converges uniformly
in every bounded interval. It is easy to check the sum of two uniformly convergent sequences

is uniformly convergent. It follows that
∑∞

n=1(−1)n x2+n
n2 converges uniformly in every bounded

interval. However,
∞∑

n=1

∣∣∣∣(−1)n x2 +n

n2

∣∣∣∣= ∞∑
n=1

x2 +n

n2
≥

∞∑
n=1

1

n
=∞

so the series does not converge absolutely for any x. ■

7.7

Problem. For n = 1,2,3, · · · , x ∈R, put

fn(x) = x

1+nx2
.

Show that { fn} converges uniformly to a function f , and that the equation f ′(x) = lim f ′
n(x) is

correct if x 6= 0, but false if x = 0.

Proof. Note that fn → 0 pointwise. To show uniform convergence, note that 1+nx2 −2
p

n|x| =
(1−p

n|x|)2 ≥ 0. It follows that for x 6= 0

| fn(x)| =
∣∣∣ x

1+nx2

∣∣∣≤ |x|
2
p

n|x| =
1

2
p

n
→ 0

as n →∞. For x = 0, fn(0) = 0. So fn → 0 uniformly. f ′
n(x) = 1−nx2

(1+nx2)2 . It is easy to see f ′
n(x) → 0 if

x 6= 0 and f ′
n(0) = 1 for all n ∈N. ■

7.8

Problem. If I (x) = 1 for x > 0 and I (x) = 0 for x ≤ 0, {xn} is a sequence of distinct points of (a,b),
and if

∑ |cn | converges, prove that the series

f (x) =
∞∑

n=1
cn I (x −xn) a ≤ x ≤ b

converges uniformly, and that f is continuous for every x 6= xn .

Proof. It follows immediately from Weierstrass M-test with Mn = |cn |. The sequence of partial
sums are continuous for all x 6= xn so f is continuous for every x 6= xn by the uniform limit
theorem. ■
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7.9

Problem. Let { fn} be a sequence of continuous functions which converges uniformly to a function
f on a set E. Prove that lim fn(xn) = f (x) for every sequence of points xn ∈ E such that xn → x,
and x ∈ E. Is the converse of this true?

Proof. This follows immediately from the continuity of f as a consequence of the uniform limit
theorem:

| fn(xn)− f (x)| ≤ | fn(xn)− f (xn)|+ | f (xn)− f (x)| ≤ || fn − f ||u +| f (xn)− f (x)|.
The converse is if { fn} is a sequence of continuous functions and lim fn(xn) = f (x) for every
xn → x ∈ E , then fn → f uniformly, which is not true in general. Consider the growing steeple

function fn : (0,∞) → R given by fn(x) =


n2x x ∈ (0, 1

n ],

2n −n2x x ∈ [ 1
n , 2

n ],

0 x ∈ [ 2
n ,∞).

fn → 0 pointwise, but not

uniformly ( fn
( 1

n

)= n). It is easy to check for every xn → x, lim fn(xn) = f (x) = 0 (Check!). ■

7.10

Problem. Consider the function f (x) = ∑∞
n=1

(nx)
n2 , x ∈ R. Find all discontinuities of f , and show

that they form a countable dense set. Show that f is nevertheless Riemann-integrable on every
bounded interval.

Proof. First 0 ≤ (nx)
n2 ≤ 1

n2 so f (x) =∑∞
n=1

(nx)
n2 is well-defined for x ∈ R. Moreover, by Weierstrass

M-test, f (x) converges uniformly. By the corollary after Theorem 7.16, f can be integrated term
by term, i.e. ∫ b

a
f d x =

∞∑
n=1

∫ b

a

(nx)

n2
d x.

It is easy to see (nx)
n2 ∈R on [a,b] for every n ∈N. So f ∈R on every bounded interval. However, f

is discontinuous at all rational numbers. Note that f (x+1) =∑∞
n=1

(nx+n)
n2 =∑∞

n=1
(nx)
n2 = f (x) so f

is periodic with period 1. It suffices to prove f is discontinuous on [0,1)∩Q. If x ∈R\Q, nx ∈R\Q
for every n ∈N. But the function (·) is continuous on R\N. So (·) is continuous at nx for every n
and f is continuous on R \Q by the uniform limit theorem. Let x = p

q ∈ [0,1)∩Q, where p < q ,
q 6= 0. By the division theorem, n = kq + r for some unique q,r ∈Z, 0 ≤ r < q . q is the quotient
and r is the remainder. Split the series according to the remainder, f (x) = ∑q−1

r=0 fr (x), where

f0(x) = ∑∞
k=1

(kqx)
(kq)2 and fr (x) = ∑∞

k=0
((kq+r )x)
(kq+r )2 for 1 ≤ r < q . Since f (x) converges absolutely, this

rearrangement is valid by Riemann rearrangement theorem. For 1 ≤ r < q , (kq + r )x = (kq +
r ) p

q = kp + r p
q 6∈ Z so (·) is continuous at (kq + r )x and hence f1, f2, · · · , fq−1 are continuous at

p
q by the uniform limit theorem. However, f0( p

q ) = ∑∞
k=1

(pk)
(kq)2 = 0. Choose xm ∈ ( p−1/m

q , p
q ). As

m →∞, xm → p
q . Then p − 1

m < qxm < p. This implies (qxm) > 1− 1
m . It follows that

f0(xm) =
∞∑

k=1

(kqxm)

(kq)2
≥ (qxm)

q2
≥ 1

q2

(
1− 1

m

)
.
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Hence liminfm→∞ f0(xm) ≥ 1
q2 > 0, showing f0 is discontinuous at p

q . Since f = ∑q−1
r=0 fr , f is

discontinuous atQ. ■

7.12

Problem. Suppose g and fn are defined on (0,∞), are Riemann-integrable on [t ,T ] whenever
0 < t < T <∞, | fn | ≤ g , fn → f uniformly on every compact subset of (0,∞), and

∫ ∞
0 g (x)d x <∞.

Prove that

lim
n→∞

∫ ∞

0
fn(x)d x =

∫ ∞

0
f (x)d x.

Proof. Let ε > 0. Note that g ≥ 0. There exists α < β such that for all y > β, x < α,
∫ ∞

y g d t < ε

and
∫ x

0 g d t < ε. It is easy to see that for all a < b <α,
∫ b

a g d t ≤ ∫ α
0 g d t < ε so for a fixed R > 0∣∣∣∣∫ R

a
fnd t −

∫ R

b
fnd t

∣∣∣∣= ∣∣∣∣∫ b

a
fnd t

∣∣∣∣≤ ∫ b

a
| fn |d t ≤

∫ b

a
g d t < ε.

It follows that limx→0
∫ R

x fnd t exists. Similarly, limy→∞
∫ y

r fnd t exists for a fixed r > 0. It follows
that

∫ ∞
0 fnd t converges for every n ∈ N. Since fn → f pointwise, | f | ≤ g . Similarly,

∫ ∞
0 f d t

converges. Then for x < α, y > β, fn → f uniformly on [x, y] so that
∣∣∫ y

x fnd t −∫ y
x f d t

∣∣ ≤ || fn −
f ||u(y −x) < ε for n sufficiently large. Hence for sufficiently large n∣∣∣∣∫ ∞

0
fnd t −

∫ ∞

0
f d t

∣∣∣∣≤ ∣∣∣∣∫ ∞

0
fnd t −

∫ y

x
fnd t

∣∣∣∣+ ∣∣∣∣∫ y

x
fnd t −

∫ y

x
f d t

∣∣∣∣+ ∣∣∣∣∫ y

x
f d t −

∫ ∞

0
f d t

∣∣∣∣
≤ 2ε+ε+2ε

= 5ε.

■
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