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Partial solutions to Homework 6

Exercise 7.15 f needs to be constant on [0,∞). Indeed, suppose there exist x, y ≥ 0 such that
f(x) 6= f(y), say |f(x)− f(y)| = δ > 0. By assumption also |fn(x/n)− fn(y/n)| = δ, but since x/n
and y/n converge to 0 as n→∞, this would contradict the equicontinuity of {fn} on [0, 1].

Exercise 7.16 Fix ε > 0. By equicontinuity we can find δ > 0 such that |fn(x) − fn(y)| < ε
whenever |x−y| < δ. Since K is compact we can also find a finite number of points x1, . . . , xm such
that for every x ∈ K there exists 1 ≤ j ≤ m with |x− xj | < δ. Now, since fn converges pointwise,
we can choose N such that |fn(xj)− fk(xj)| < ε whenever n, k ≥ N . Now take any x ∈ K. Choose
1 ≤ j ≤ m such that |x− xj | < δ. Then we have for any n, k ≥ N :

|fn(x)− fk(x)| ≤ |fn(x)− fn(xj)|+ |fn(xj)− fk(xj)|+ |fk(xj)− fk(x)| < 3ε.

Thus (fn) is a uniform Cauchy sequence.

Exercise 7.19 If S is compact then obviously it is closed and bounded. Suppose S is not equicon-
tinuous. Then by definition there exists ε > 0, and for every n ∈ N there exist xn, yn ∈ K, fn ∈ S
such that d(xn, yn) < 1/n and |fn(xn) − fn(yn)| ≥ ε. Then obviously no subsequence of (fn)n is
equicontinuous and hence by Theorem 7.24 no subsequence of (fn)n can converge in C(K). It would
follow that S is not compact.

Conversely, if S is pointwise bounded and equicontinuous, then by Theorem 7.25 every sequence
in S contains a uniformly convergent subsequence, whose limit lies again in S because S is closed.
Hence S is compact.

Exercise 7.20 Let P (x) =
∑n

i=1 aix
i be a polynomial. Then by assumption∫ 1

0
f(x)P (x) dx =

n∑
i=1

ai

∫ 1

0
f(x)xi dx = 0.

By the Stone-Weierstrass Theorem, f can be approximated uniformly by polynomials Pn. Hence
(using uniform convergence and Theorem 7.16)∫ 1

0
f2(x) dx = lim

n→∞

∫ 1

0
f(x)Pn(x) dx = 0.

Hence f = 0.

Exercise 7.22 Exercise 6.12 tells us that there exists a sequence of continuous functions gn such
that

lim
n→∞

∫ b

a
|f(x)− gn(x)|2 dα = 0.

Since the gn are continuous, they can be approximated uniformly by polynomials. So we can take
Pn such that |gn(x)− Pn(x)| < 1/n for all x ∈ [a, b]. These Pn obviously do the job.

Extra Problem 1. Since Pn converges uniformly to f , they form in particular a uniform Cauchy
sequence. Let ε > 0 and take N such that for every n ≥ N , |Pn(x) − PN (x)| ≤ ε for all x ∈ R.
Since Pn and PN are polynomials, so is there difference, i.e. we can write Pn(x) − PN (x) =

1



2

∑k
i=1 aix

i, with ak 6= 0. If k ≥ 1, using that a non-constant polynomial diverges at infinity, we
get |Pn(x) − PN (x)| > ε for x big enough, contradiction. Hence k = 0, or in other words for
every n ≥ N , Pn(x) = PN (x) + bn for some real number bn. Hence f(x) = limn→∞ Pn(x) =
limn→∞ PN (x) + bn = PN (x) + b, where b is the limit of the sequence (bn)n, which exists because
the sequence Pn converges by assumption. We conclude that f is a polynomial (namely PN (x)+b).
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