MATH 140B - Winter 2019

Partial solutions to Homework 6

Exercise $7.15 f$ needs to be constant on $[0, \infty)$. Indeed, suppose there exist $x, y \geq 0$ such that $f(x) \neq f(y)$, say $|f(x)-f(y)|=\delta>0$. By assumption also $\left|f_{n}(x / n)-f_{n}(y / n)\right|=\delta$, but since x / n and y / n converge to 0 as $n \rightarrow \infty$, this would contradict the equicontinuity of $\left\{f_{n}\right\}$ on $[0,1]$.

Exercise 7.16 Fix $\varepsilon>0$. By equicontinuity we can find $\delta>0$ such that $\left|f_{n}(x)-f_{n}(y)\right|<\varepsilon$ whenever $|x-y|<\delta$. Since K is compact we can also find a finite number of points x_{1}, \ldots, x_{m} such that for every $x \in K$ there exists $1 \leq j \leq m$ with $\left|x-x_{j}\right|<\delta$. Now, since f_{n} converges pointwise, we can choose N such that $\left|f_{n}\left(x_{j}\right)-f_{k}\left(x_{j}\right)\right|<\varepsilon$ whenever $n, k \geq N$. Now take any $x \in K$. Choose $1 \leq j \leq m$ such that $\left|x-x_{j}\right|<\delta$. Then we have for any $n, k \geq N$:

$$
\left|f_{n}(x)-f_{k}(x)\right| \leq\left|f_{n}(x)-f_{n}\left(x_{j}\right)\right|+\left|f_{n}\left(x_{j}\right)-f_{k}\left(x_{j}\right)\right|+\left|f_{k}\left(x_{j}\right)-f_{k}(x)\right|<3 \varepsilon
$$

Thus $\left(f_{n}\right)$ is a uniform Cauchy sequence.

Exercise 7.19 If S is compact then obviously it is closed and bounded. Suppose S is not equicontinuous. Then by definition there exists $\varepsilon>0$, and for every $n \in \mathbb{N}$ there exist $x_{n}, y_{n} \in K, f_{n} \in S$ such that $d\left(x_{n}, y_{n}\right)<1 / n$ and $\left|f_{n}\left(x_{n}\right)-f_{n}\left(y_{n}\right)\right| \geq \varepsilon$. Then obviously no subsequence of $\left(f_{n}\right)_{n}$ is equicontinuous and hence by Theorem 7.24 no subsequence of $\left(f_{n}\right)_{n}$ can converge in $\mathcal{C}(K)$. It would follow that S is not compact.
Conversely, if S is pointwise bounded and equicontinuous, then by Theorem 7.25 every sequence in S contains a uniformly convergent subsequence, whose limit lies again in S because S is closed. Hence S is compact.

Exercise 7.20 Let $P(x)=\sum_{i=1}^{n} a_{i} x^{i}$ be a polynomial. Then by assumption

$$
\int_{0}^{1} f(x) P(x) d x=\sum_{i=1}^{n} a_{i} \int_{0}^{1} f(x) x^{i} d x=0
$$

By the Stone-Weierstrass Theorem, f can be approximated uniformly by polynomials P_{n}. Hence (using uniform convergence and Theorem 7.16)

$$
\int_{0}^{1} f^{2}(x) d x=\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) P_{n}(x) d x=0
$$

Hence $f=0$.

Exercise 7.22 Exercise 6.12 tells us that there exists a sequence of continuous functions g_{n} such that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b}\left|f(x)-g_{n}(x)\right|^{2} d \alpha=0
$$

Since the g_{n} are continuous, they can be approximated uniformly by polynomials. So we can take P_{n} such that $\left|g_{n}(x)-P_{n}(x)\right|<1 / n$ for all $x \in[a, b]$. These P_{n} obviously do the job.

Extra Problem 1. Since P_{n} converges uniformly to f, they form in particular a uniform Cauchy sequence. Let $\varepsilon>0$ and take N such that for every $n \geq N,\left|P_{n}(x)-P_{N}(x)\right| \leq \varepsilon$ for all $x \in \mathbb{R}$. Since P_{n} and P_{N} are polynomials, so is there difference, i.e. we can write $P_{n}(x)-P_{N}(x)=$
$\sum_{i=1}^{k} a_{i} x^{i}$, with $a_{k} \neq 0$. If $k \geq 1$, using that a non-constant polynomial diverges at infinity, we get $\left|P_{n}(x)-P_{N}(x)\right|>\varepsilon$ for x big enough, contradiction. Hence $k=0$, or in other words for every $n \geq N, P_{n}(x)=P_{N}(x)+b_{n}$ for some real number b_{n}. Hence $f(x)=\lim _{n \rightarrow \infty} P_{n}(x)=$ $\lim _{n \rightarrow \infty} P_{N}(x)+b_{n}=P_{N}(x)+b$, where b is the limit of the sequence $\left(b_{n}\right)_{n}$, which exists because the sequence P_{n} converges by assumption. We conclude that f is a polynomial (namely $P_{N}(x)+b$).

