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7.21

Problem. Let S1 be the unit circle in the complex plane, and let A be the algebra of all functions
of the form f (e iθ) =∑N

n=0 cne i nθ, θ ∈R. Then A separates points on S1 and A vanishes at no point
of S1, but nevertheless there are continuous functions on S1 which are not in the uniform closure
of A.

Proof. Note that A is simply the algebra of complex-valued polynomials on the unit circle. The
identity function z 7→ z separates points and vanishes nowhere. However, we will show f : S1 →
C, f (z) = z cannot be approximated uniformly by polynomials on the unit circle S1 ⊂ C. If
P (z) =∑n

j=0 a j z j , then

∫ 2π

0
f (e i t )P (e i t )d t =

n∑
j=0

a j

∫ 2π

0
e i ( j+1)t d t = 0.

Thus, abbreviating f (e i t ) and P (e i t ) by f and P , since | f | = 1 on S1, we have

2π=
∣∣∣∣∫ 2π

0
f f d t

∣∣∣∣≤ ∣∣∣∣∫ 2π

0
( f −P ) f d t

∣∣∣∣+ ∣∣∣∣∫ 2π

0
f Pd t

∣∣∣∣
=

∣∣∣∣∫ 2π

0
( f −P ) f d t

∣∣∣∣≤ ∫ 2π

0
| f −P |d t ≤ 2π|| f −P ||u .

Therefore, || f −P ||u ≥ 1 for any polynomial P .

Remark. This example shows that the Stone-Weierstrass theorem, as in Theorem 7.32, is false
for complex-valued functions. In fact, if K ◦ 6= ;, any uniform limit of polynomials on K must
be holomorphic (infinitely differentiable) on K ◦. So the algebra of polynomials in one complex
variable is not dense in C (K ) for most compact subsets K of C. For Stone-Weierstrass theorem to
hold for complex-valued functions, self-adjointness of the algebra is required. See Theorem 7.33.
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8.1

Problem. Define f (x) =
{

e−1/x2
x 6= 0

0 x = 0
. Prove that f has derivatives of all orders at x = 0, and

that f (n)(0) = 0 for all n ∈N.

Proof. Suppose for x 6= 0, f (n)(x) = pn(x−1)e−1/x2
with pn a polynomial. Then

f (n+1)(x) = e−1/x2 (
2x−3pn(x−1)−x−2p ′

n(x−1)
)

.

So define p1(x) = 2x3 and pn+1(x) = 2x3pn(x)− x2p ′
n(x). So we’ve shown by induction that for

x 6= 0, f (n)(x) = pn(x−1)e−1/x2
with pn a polynomial recursively defined. We prove f (n)(0) = 0 for

all n ∈N. For n = 0 this is true by definition, so assume that it is true for some n ≥ 0. To prove
that f (n+1)(0) = 0 exists, it suffices to show that f (n) has one-sided derivatives from both sides at
x = 0 and that they are equal. Clearly, the derivative from the left is zero. The derivative of f (n)

from the right at x = 0 is equal to

lim
x→0

f (n)(x)− f (n)(0)

x
= lim

x→0
x−1pn(x−1)e−1/x2

.

A standard application of l’Hôpital’s rule and induction shows that for any integer n ≥ 0,

lim
x→0

e−1/x2

xn
= lim

x→0

x−n

e1/x2 = 0.

So f (n+1)(0) = 0. By induction, f (n)(0) = 0 for all n ∈N.

Remark. This is an example of non-analytic smooth function. We’ll shown f is smooth everywhere.

If f were analytic at 0, then the Taylor series at the origin gives f (x) =∑∞
n=0

f (n)

n! xn =∑∞
n=0

0
n! x

n =
0. The Taylor series does not equal f (x) for x > 0. Therefore, f is not analytic at the origin. The set
of real-valued smooth function C∞(R) is a proper subset of the set of real analytic function Cω(R).

Question: What does h :R→R,h(x) = f (x)
f (x)+ f (1−x) looks like? ■

8.3

Problem (Tonelli’s theorem for series). Prove that∑
m

∑
n

amn =∑
n

∑
m

amn

if amn ≥ 0 for all m and n.

Proof. Either both sums are infinite, or if either sum is finite, we may use Fubini’s theorem for
series (Theorem 8.3) to conclude they are equal.
Here is a direct proof. We will show∑

n,m∈N
an,m =

∞∑
n=1

∞∑
m=1

an,m =
∞∑

m=1

∞∑
n=1

an,m ,
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where we define ∑
x∈X

f (x) = sup

{∑
x∈F

f (x) : F ⊂ X ,F finite

}
.

We only prove the first equality. The second equality follows by symmetry. Let F ⊂N2 be a finite
subset. Then F ⊂ {1, · · · , N }2 for some finite N . Thus by the nonnegativity of an,m ,

∑
(n,m)∈F

an,m ≤ ∑
(n,m)∈{1,··· ,N }2

an,m =
N∑

n=1

N∑
m=1

an,m ≤
∞∑

n=1

∞∑
m=1

an,m .

Therefore,
∑

n,m∈N an,m ≤∑∞
n=1

∑∞
m=1 an,m . It remains to show the reverse inequality

∑∞
n=1

∑∞
m=1 an,m ≤∑

n,m∈N an,m . It suffices to show
∑N

n=1
∑∞

m=1 an,m ≤ ∑
n,m∈N an,m for each finite N . Fix N . As

M →∞,
∑M

m=1 an,m →∑∞
m=1 an,m and so

∑N
n=1

∑M
m=1 an,m →∑N

n=1
∑∞

m=1 an,m . Thus it suffices to
show that

∑N
n=1

∑M
m=1 an,m ≤∑

n,m∈N an,m . But

N∑
n=1

M∑
m=1

an,m = ∑
(n,m)∈{1,··· ,N }×{1,··· ,M }

an,m

and the claim follows. ■

1

Problem. Let f (x) =∑∞
n=0 an xn be a power series with radius of convergence R. If the power series

converges at x = R, prove that the series converges uniformly on [0,R].

Proof.

Lemma. Let bn satisfy b1 ≥ b2 ≥ ·· · ≥ 0, and let
∑∞

n=1 an be a series for which the partial sums are
bounded, i.e. |An | = |∑n

k=1 ak | ≤ M for all n ∈N. Then for all n ∈N,∣∣∣∣∣ n∑
k=1

ak bk

∣∣∣∣∣≤ Mb1.

Proof. By Abel’s summation-by-parts formula, we write∣∣∣∣∣ n∑
k=1

ak bk

∣∣∣∣∣=
∣∣∣∣∣Anbn+1 +

n∑
k=1

Ak (bk −bk+1)

∣∣∣∣∣
≤ Mbn+1 +

n∑
k=1

M(bk −bk+1)

= Mbn+1 +M(b1 −bn+1) = Mb1.

■
To apply the lemma, we write

f (x) =
∞∑

n=0
an xn =

∞∑
n=0

(anRn)
( x

R

)n
.
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To prove the series converges uniformly on [0,R], it suffices to show the series is Cauchy. Since∑∞
n=0 anRn converges by assumption, there exists N such that for all n > m ≥ N∣∣∣∣∣ n∑

k=m+1
ak Rk

∣∣∣∣∣< ε

2
.

Fix m ∈ N. Observe that
∑∞

j=1 am+ j Rm+ j ≤ ε
2 and ( x

R )m+ j is monotonically decreasing. We can
apply the lemma to the sequences with the first m terms omitted:∣∣∣∣∣ n∑

k=m+1
(ak Rk )

( x

R

)k
∣∣∣∣∣≤ ε

2

( x

R

)m+1
< ε.

Remark. This is a stronger form of Abel’s theorem (Theorem 8.2). By the uniform limit theorem,
f (x) =∑∞

n=0 an xn is continuous at x = R so limx→R− f (x) = f (R) =∑∞
n=0 anRn .

■

2

Problem. Use the formula 1
1−x = ∑∞

n=0 xn , |x| < 1 to compute the exact value of the following

series:
∑∞

n=0
n
2n ,

∑∞
n=0

n2

2n .

Proof. The interval of convergence for all the power series in the problem is |x| < 1. Differentiate
1

1−x term by term, (
1

1−x

)′
= 1

(1−x)2
=

∞∑
n=1

nxn−1 = 1+2x +3x2 +·· · .

Subtract 1
1−x from 1

(1−x)2 , we have

1

(1−x)2
− 1

1−x
=

∞∑
n=1

nxn−1 −
∞∑

n=0
xn

=
∞∑

n=1
nxn−1 −

∞∑
n=1

xn−1

=
∞∑

n=1
(n −1)xn−1

=
∞∑

n=0
nxn .

Hence for |x| < 1,
∞∑

n=0
nxn = x

(1−x)2
.

So when x = 1
2 ,

∑∞
n=0

n
2n = 2.

Differentiate 1
(1−x)2 − 1

1−x term by term,(
1

(1−x)2
− 1

1−x

)′
= 2

(1−x)3
− 1

(1−x)2
=

∞∑
n=1

n2xn−1.
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To shift
∑∞

n=1 n2xn−1 to
∑∞

n=1(n −1)2xn−1 =∑∞
n=0 n2xn , we subtract

∑∞
n=1(2n −1)xn−1 = 2

(1−x)2 −
1

1−x from 2
(1−x)3 − 1

(1−x)2 .

2

(1−x)3
− 1

(1−x)2
− 2

(1−x)2
+ 1

1−x
=

∞∑
n=1

n2xn−1 −2
∞∑

n=1
nxn−1 +

∞∑
n=1

xn−1

=
∞∑

n=1
(n2 −2n +1)xn−1

=
∞∑

n=1
(n −1)2xn−1

=
∞∑

n=0
n2xn .

Hence for |x| < 1,
∞∑

n=0
n2xn = 2

(1−x)3
− 3

(1−x)2
+ 1

1−x
= x(x +1)

(1−x)3
.

So when x = 1
2 ,

∑∞
n=0

n2

2n = 6.
■

3

Problem. Assume f ∈ C∞(R). Suppose that for any R > 0, there exists M with the property

| f (n)(x)| ≤ M, ∀|x| ≤ R. Prove that the Taylor series
∑∞

k=0
f (k)(x0)

k ! (x − x0)k converges uniformly
to f on any compact subset of R.

Proof. Let K ⊂R be a compact set and R = supx∈K |x −x0| <∞. For n ∈N,∣∣∣∣∣ n∑
k=0

f (k)(x0)

k !
(x −x0)k − f (x)

∣∣∣∣∣=
∣∣∣∣ f (n+1)(ξ)

(n +1)!
(x −x0)n+1

∣∣∣∣
≤ M

Rn+1

(n +1)!
,

by Taylor’s theorem. But Rn

n! → 0 as
∑∞

k=0
Rk

k ! = eR converges. Hence the Taylor series converges
uniformly to f on any compact subset of R. ■
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