Solution to Homework 7 Math 140B

Haiyu Huang

March 5, 2019

Disclaimer: The solution may contain errors or typos so use at your own risk.

7.21

Problem. Let S^{1} be the unit circle in the complex plane, and let \mathcal{A} be the algebra of all functions of the form $f\left(e^{i \theta}\right)=\sum_{n=0}^{N} c_{n} e^{i n \theta}, \theta \in \mathbb{R}$. Then \mathcal{A} separates points on S^{1} and \mathcal{A} vanishes at no point of S^{1}, but nevertheless there are continuous functions on S^{1} which are not in the uniform closure of \mathcal{A}.

Proof. Note that \mathcal{A} is simply the algebra of complex-valued polynomials on the unit circle. The identity function $z \mapsto z$ separates points and vanishes nowhere. However, we will show $f: S^{1} \rightarrow$ $\mathbb{C}, f(z)=\bar{z}$ cannot be approximated uniformly by polynomials on the unit circle $S^{1} \subset \mathbb{C}$. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$, then

$$
\int_{0}^{2 \pi} \bar{f}\left(e^{i t}\right) P\left(e^{i t}\right) d t=\sum_{j=0}^{n} a_{j} \int_{0}^{2 \pi} e^{i(j+1) t} d t=0 .
$$

Thus, abbreviating $f\left(e^{i t}\right)$ and $P\left(e^{i t}\right)$ by f and P, since $|f|=1$ on S^{1}, we have

$$
\begin{aligned}
2 \pi=\left|\int_{0}^{2 \pi} f \bar{f} d t\right| & \leq\left|\int_{0}^{2 \pi}(f-P) \bar{f} d t\right|+\left|\int_{0}^{2 \pi} \bar{f} P d t\right| \\
& =\left|\int_{0}^{2 \pi}(f-P) \bar{f} d t\right| \leq \int_{0}^{2 \pi}|f-P| d t \leq 2 \pi| | f-P \|_{u} .
\end{aligned}
$$

Therefore, $\|f-P\|_{u} \geq 1$ for any polynomial P.
Remark. This example shows that the Stone-Weierstrass theorem, as in Theorem 7.32, is false for complex-valued functions. In fact, if $K^{\circ} \neq \varnothing$, any uniform limit of polynomials on K must be holomorphic (infinitely differentiable) on K°. So the algebra of polynomials in one complex variable is not dense in $C(K)$ for most compact subsets K of \mathbb{C}. For Stone-Weierstrass theorem to hold for complex-valued functions, self-adjointness of the algebra is required. See Theorem 7.33.

8.1

Problem. Define $f(x)=\left\{\begin{array}{ll}e^{-1 / x^{2}} & x \neq 0 \\ 0 & x=0\end{array}\right.$. Prove that f has derivatives of all orders at $x=0$, and that $f^{(n)}(0)=0$ for all $n \in \mathbb{N}$.

Proof. Suppose for $x \neq 0, f^{(n)}(x)=p_{n}\left(x^{-1}\right) e^{-1 / x^{2}}$ with p_{n} a polynomial. Then

$$
f^{(n+1)}(x)=e^{-1 / x^{2}}\left(2 x^{-3} p_{n}\left(x^{-1}\right)-x^{-2} p_{n}^{\prime}\left(x^{-1}\right)\right) .
$$

So define $p_{1}(x)=2 x^{3}$ and $p_{n+1}(x)=2 x^{3} p_{n}(x)-x^{2} p_{n}^{\prime}(x)$. So we've shown by induction that for $x \neq 0, f^{(n)}(x)=p_{n}\left(x^{-1}\right) e^{-1 / x^{2}}$ with p_{n} a polynomial recursively defined. We prove $f^{(n)}(0)=0$ for all $n \in \mathbb{N}$. For $n=0$ this is true by definition, so assume that it is true for some $n \geq 0$. To prove that $f^{(n+1)}(0)=0$ exists, it suffices to show that $f^{(n)}$ has one-sided derivatives from both sides at $x=0$ and that they are equal. Clearly, the derivative from the left is zero. The derivative of $f^{(n)}$ from the right at $x=0$ is equal to

$$
\lim _{x \rightarrow 0} \frac{f^{(n)}(x)-f^{(n)}(0)}{x}=\lim _{x \rightarrow 0} x^{-1} p_{n}\left(x^{-1}\right) e^{-1 / x^{2}}
$$

A standard application of l'Hôpital's rule and induction shows that for any integer $n \geq 0$,

$$
\lim _{x \rightarrow 0} \frac{e^{-1 / x^{2}}}{x^{n}}=\lim _{x \rightarrow 0} \frac{x^{-n}}{e^{1 / x^{2}}}=0
$$

So $f^{(n+1)}(0)=0$. By induction, $f^{(n)}(0)=0$ for all $n \in \mathbb{N}$.
Remark. This is an example ofnon-analytic smooth function. We'll shown f is smooth everywhere. If f were analytic at 0 , then the Taylor series at the origin gives $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{0}{n!} x^{n}=$ 0 . The Taylor series does not equal $f(x)$ for $x>0$. Therefore, f is not analytic at the origin. The set of real-valued smooth function $C^{\infty}(\mathbb{R})$ is a proper subset of the set of real analytic function $C^{\omega}(\mathbb{R})$.
Question: What does $h: \mathbb{R} \rightarrow \mathbb{R}, h(x)=\frac{f(x)}{f(x)+f(1-x)}$ looks like?

8.3

Problem (Tonelli's theorem for series). Prove that

$$
\sum_{m} \sum_{n} a_{m n}=\sum_{n} \sum_{m} a_{m n}
$$

if $a_{m n} \geq 0$ for all m and n.
Proof. Either both sums are infinite, or if either sum is finite, we may use Fubini's theorem for series (Theorem 8.3) to conclude they are equal.
Here is a direct proof. We will show

$$
\sum_{n, m \in \mathbb{N}} a_{n, m}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n, m}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{n, m}
$$

where we define

$$
\sum_{x \in X} f(x)=\sup \left\{\sum_{x \in F} f(x): F \subset X, F \text { finite }\right\}
$$

We only prove the first equality. The second equality follows by symmetry. Let $F \subset \mathbb{N}^{2}$ be a finite subset. Then $F \subset\{1, \cdots, N\}^{2}$ for some finite N. Thus by the nonnegativity of $a_{n, m}$,

$$
\sum_{(n, m) \in F} a_{n, m} \leq \sum_{(n, m) \in\{1, \cdots, N\}^{2}} a_{n, m}=\sum_{n=1}^{N} \sum_{m=1}^{N} a_{n, m} \leq \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n, m} .
$$

Therefore, $\sum_{n, m \in \mathbb{N}} a_{n, m} \leq \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n, m}$. It remains to show the reverse inequality $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n, m} \leq$ $\sum_{n, m \in \mathbb{N}} a_{n, m}$. It suffices to show $\sum_{n=1}^{N} \sum_{m=1}^{\infty} a_{n, m} \leq \sum_{n, m \in \mathbb{N}} a_{n, m}$ for each finite N. Fix N. As $M \rightarrow \infty, \sum_{m=1}^{M} a_{n, m} \rightarrow \sum_{m=1}^{\infty} a_{n, m}$ and so $\sum_{n=1}^{N} \sum_{m=1}^{M} a_{n, m} \rightarrow \sum_{n=1}^{N} \sum_{m=1}^{\infty} a_{n, m}$. Thus it suffices to show that $\sum_{n=1}^{N} \sum_{m=1}^{M} a_{n, m} \leq \sum_{n, m \in \mathbb{N}} a_{n, m}$. But

$$
\sum_{n=1}^{N} \sum_{m=1}^{M} a_{n, m}=\sum_{(n, m) \in\{1, \cdots, N\} \times\{1, \cdots, M\}} a_{n, m}
$$

and the claim follows.

1

Problem. Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series with radius of convergence R. If the power series converges at $x=R$, prove that the series converges uniformly on $[0, R]$.

Proof.
Lemma. Let b_{n} satisfy $b_{1} \geq b_{2} \geq \cdots \geq 0$, and let $\sum_{n=1}^{\infty} a_{n}$ be a series for which the partial sums are bounded, i.e. $\left|A_{n}\right|=\left|\sum_{k=1}^{n} a_{k}\right| \leq M$ for all $n \in \mathbb{N}$. Then for all $n \in \mathbb{N}$,

$$
\left|\sum_{k=1}^{n} a_{k} b_{k}\right| \leq M b_{1}
$$

Proof. By Abel's summation-by-parts formula, we write

$$
\begin{aligned}
\left|\sum_{k=1}^{n} a_{k} b_{k}\right| & =\left|A_{n} b_{n+1}+\sum_{k=1}^{n} A_{k}\left(b_{k}-b_{k+1}\right)\right| \\
& \leq M b_{n+1}+\sum_{k=1}^{n} M\left(b_{k}-b_{k+1}\right) \\
& =M b_{n+1}+M\left(b_{1}-b_{n+1}\right)=M b_{1} .
\end{aligned}
$$

To apply the lemma, we write

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty}\left(a_{n} R^{n}\right)\left(\frac{x}{R}\right)^{n}
$$

To prove the series converges uniformly on $[0, R]$, it suffices to show the series is Cauchy. Since $\sum_{n=0}^{\infty} a_{n} R^{n}$ converges by assumption, there exists N such that for all $n>m \geq N$

$$
\left|\sum_{k=m+1}^{n} a_{k} R^{k}\right|<\frac{\epsilon}{2}
$$

Fix $m \in \mathbb{N}$. Observe that $\sum_{j=1}^{\infty} a_{m+j} R^{m+j} \leq \frac{\epsilon}{2}$ and $\left(\frac{x}{R}\right)^{m+j}$ is monotonically decreasing. We can apply the lemma to the sequences with the first m terms omitted:

$$
\left|\sum_{k=m+1}^{n}\left(a_{k} R^{k}\right)\left(\frac{x}{R}\right)^{k}\right| \leq \frac{\epsilon}{2}\left(\frac{x}{R}\right)^{m+1}<\epsilon .
$$

Remark. This is a stronger form of Abel's theorem (Theorem 8.2). By the uniform limit theorem, $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is continuous at $x=R$ so $\lim _{x \rightarrow R^{-}} f(x)=f(R)=\sum_{n=0}^{\infty} a_{n} R^{n}$.

2

Problem. Use the formula $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n},|x|<1$ to compute the exact value of the following series: $\sum_{n=0}^{\infty} \frac{n}{2^{n}}, \sum_{n=0}^{\infty} \frac{n^{2}}{2^{n}}$.
Proof. The interval of convergence for all the power series in the problem is $|x|<1$. Differentiate $\frac{1}{1-x}$ term by term,

$$
\left(\frac{1}{1-x}\right)^{\prime}=\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}=1+2 x+3 x^{2}+\cdots
$$

Subtract $\frac{1}{1-x}$ from $\frac{1}{(1-x)^{2}}$, we have

$$
\begin{aligned}
\frac{1}{(1-x)^{2}}-\frac{1}{1-x} & =\sum_{n=1}^{\infty} n x^{n-1}-\sum_{n=0}^{\infty} x^{n} \\
& =\sum_{n=1}^{\infty} n x^{n-1}-\sum_{n=1}^{\infty} x^{n-1} \\
& =\sum_{n=1}^{\infty}(n-1) x^{n-1} \\
& =\sum_{n=0}^{\infty} n x^{n} .
\end{aligned}
$$

Hence for $|x|<1$,

$$
\sum_{n=0}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}
$$

So when $x=\frac{1}{2}, \sum_{n=0}^{\infty} \frac{n}{2^{n}}=2$.
Differentiate $\frac{1}{(1-x)^{2}}-\frac{1}{1-x}$ term by term,

$$
\left(\frac{1}{(1-x)^{2}}-\frac{1}{1-x}\right)^{\prime}=\frac{2}{(1-x)^{3}}-\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n^{2} x^{n-1} .
$$

To shift $\sum_{n=1}^{\infty} n^{2} x^{n-1}$ to $\sum_{n=1}^{\infty}(n-1)^{2} x^{n-1}=\sum_{n=0}^{\infty} n^{2} x^{n}$, we subtract $\sum_{n=1}^{\infty}(2 n-1) x^{n-1}=\frac{2}{(1-x)^{2}}-$ $\frac{1}{1-x}$ from $\frac{2}{(1-x)^{3}}-\frac{1}{(1-x)^{2}}$.

$$
\begin{aligned}
\frac{2}{(1-x)^{3}}-\frac{1}{(1-x)^{2}}-\frac{2}{(1-x)^{2}}+\frac{1}{1-x} & =\sum_{n=1}^{\infty} n^{2} x^{n-1}-2 \sum_{n=1}^{\infty} n x^{n-1}+\sum_{n=1}^{\infty} x^{n-1} \\
& =\sum_{n=1}^{\infty}\left(n^{2}-2 n+1\right) x^{n-1} \\
& =\sum_{n=1}^{\infty}(n-1)^{2} x^{n-1} \\
& =\sum_{n=0}^{\infty} n^{2} x^{n} .
\end{aligned}
$$

Hence for $|x|<1$,

$$
\sum_{n=0}^{\infty} n^{2} x^{n}=\frac{2}{(1-x)^{3}}-\frac{3}{(1-x)^{2}}+\frac{1}{1-x}=\frac{x(x+1)}{(1-x)^{3}}
$$

So when $x=\frac{1}{2}, \sum_{n=0}^{\infty} \frac{n^{2}}{2^{n}}=6$.

3

Problem. Assume $f \in C^{\infty}(\mathbb{R})$. Suppose that for any $R>0$, there exists M with the property $\left|f^{(n)}(x)\right| \leq M, \forall|x| \leq R$. Prove that the Taylor series $\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$ converges uniformly to f on any compact subset of \mathbb{R}.

Proof. Let $K \subset \mathbb{R}$ be a compact set and $R=\sup _{x \in K}\left|x-x_{0}\right|<\infty$. For $n \in \mathbb{N}$,

$$
\begin{aligned}
\left|\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}-f(x)\right| & =\left|\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}\right| \\
& \leq M \frac{R^{n+1}}{(n+1)!}
\end{aligned}
$$

by Taylor's theorem. But $\frac{R^{n}}{n!} \rightarrow 0$ as $\sum_{k=0}^{\infty} \frac{R^{k}}{k!}=e^{R}$ converges. Hence the Taylor series converges uniformly to f on any compact subset of \mathbb{R}.

