Solution to Homework 7
Math 140B
Haiyu Huang
March 5, 2019

Disclaimer: The solution may contain errors or typos so use at your own risk.

7.21

Problem. Let \(S^1 \) be the unit circle in the complex plane, and let \(A \) be the algebra of all functions of the form \(f(e^{i\theta}) = \sum_{n=0}^{N} c_n e^{in\theta}, \theta \in \mathbb{R} \). Then \(A \) separates points on \(S^1 \) and \(A \) vanishes at no point of \(S^1 \), but nevertheless there are continuous functions on \(S^1 \) which are not in the uniform closure of \(A \).

Proof. Note that \(A \) is simply the algebra of complex-valued polynomials on the unit circle. The identity function \(z \mapsto z \) separates points and vanishes nowhere. However, we will show \(f : S^1 \to \mathbb{C}, \ f(z) = \overline{z} \) cannot be approximated uniformly by polynomials on the unit circle \(S^1 \subset \mathbb{C} \). If \(P(z) = \sum_{j=0}^{n} a_j z^j \), then
\[
\int_{0}^{2\pi} \overline{f(e^{it})} P(e^{it}) dt = \sum_{j=0}^{n} a_j \int_{0}^{2\pi} e^{i(j+1)t} dt = 0.
\]

Thus, abbreviating \(f(e^{it}) \) and \(P(e^{it}) \) by \(f \) and \(P \), since \(|f| = 1 \) on \(S^1 \), we have
\[
2\pi = \left| \int_{0}^{2\pi} \overline{f} f dt \right| \leq \left| \int_{0}^{2\pi} (f - P) \overline{f} dt \right| + \left| \int_{0}^{2\pi} \overline{f} P dt \right| \leq \int_{0}^{2\pi} |f - P| dt \leq 2\pi ||f - P||_u.
\]

Therefore, \(||f - P||_u \geq 1 \) for any polynomial \(P \).

Remark. This example shows that the Stone-Weierstrass theorem, as in Theorem 7.32, is false for complex-valued functions. In fact, if \(K^c \neq \emptyset \), any uniform limit of polynomials on \(K \) must be holomorphic (infinitely differentiable) on \(K^c \). So the algebra of polynomials in one complex variable is not dense in \(C(K) \) for most compact subsets \(K \) of \(\mathbb{C} \). For Stone-Weierstrass theorem to hold for complex-valued functions, self-adjointness of the algebra is required. See Theorem 7.33.

\[\blacksquare\]
8.1

Problem. Define \(f(x) = \begin{cases} e^{-1/x^2} & x \neq 0 \\ 0 & x = 0 \end{cases} \). Prove that \(f \) has derivatives of all orders at \(x = 0 \), and that \(f^{(n)}(0) = 0 \) for all \(n \in \mathbb{N} \).

Proof. Suppose for \(x \neq 0 \), \(f^{(n)}(x) = p_n(x^{-1})e^{-1/x^2} \) with \(p_n \) a polynomial. Then

\[
f^{(n+1)}(x) = e^{-1/x^2} \left(2x^{-3}p_n(x^{-1}) - x^{-2}p_n'(x^{-1}) \right).
\]

So define \(p_1(x) = 2x^3 \) and \(p_{n+1}(x) = 2x^3p_n(x) - x^2p_n'(x) \). So we've shown by induction that for \(x \neq 0 \), \(f^{(n)}(x) = p_n(x^{-1})e^{-1/x^2} \) with \(p_n \) a polynomial recursively defined. We prove \(f^{(n)}(0) = 0 \) for all \(n \in \mathbb{N} \). For \(n = 0 \) this is true by definition, so assume that it is true for some \(n \geq 0 \). To prove that \(f^{(n+1)}(0) = 0 \) exists, it suffices to show that \(f^{(n)} \) has one-sided derivatives from both sides at \(x = 0 \) and that they are equal. Clearly, the derivative from the left is zero. The derivative of \(f^{(n)} \) from the right at \(x = 0 \) is equal to

\[
\lim_{x \to 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x} = \lim_{x \to 0} x^{-1}p_n(x^{-1})e^{-1/x^2}.
\]

A standard application of l'Hôpital's rule and induction shows that for any integer \(n \geq 0 \),

\[
\lim_{x \to 0} \frac{e^{-1/x^2}}{x^n} = \lim_{x \to 0} x^{n} e^{1/x^2} = 0.
\]

So \(f^{(n+1)}(0) = 0 \). By induction, \(f^{(n)}(0) = 0 \) for all \(n \in \mathbb{N} \).

Remark. This is an example of non-analytic smooth function. We'll shown \(f \) is smooth everywhere. If \(f \) were analytic at 0, then the Taylor series at the origin gives \(f(x) = \sum_{n=0}^{\infty} f^{(n)}(0) x^n = \sum_{n=0}^{\infty} \frac{n!}{n!} x^n = 0 \). The Taylor series does not equal \(f(x) \) for \(x > 0 \). Therefore, \(f \) is not analytic at the origin. The set of real-valued smooth function \(C^\infty(\mathbb{R}) \) is a proper subset of the set of real analytic function \(C^\omega(\mathbb{R}) \).

Question: What does \(h : \mathbb{R} \to \mathbb{R}, h(x) = \frac{f(x)}{f(x)+f(1-x)} \) looks like? ■

8.3

Problem (Tonelli’s theorem for series). Prove that

\[
\sum_m \sum_n a_{mn} = \sum_n \sum_m a_{mn}
\]

if \(a_{mn} \geq 0 \) for all \(m \) and \(n \).

Proof. Either both sums are infinite, or if either sum is finite, we may use Fubini’s theorem for series (Theorem 8.3) to conclude they are equal.

Here is a direct proof. We will show

\[
\sum_{n,m \in \mathbb{N}} a_{n,m} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n,m} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{n,m},
\]
where we define
\[
\sum_{x \in X} f(x) = \sup \left\{ \sum_{x \in F} f(x) : F \subseteq X, F \text{ finite} \right\}.
\]

We only prove the first equality. The second equality follows by symmetry. Let \(F \subseteq \mathbb{N}^2 \) be a finite subset. Then \(F \subseteq \{1, \cdots, N\}^2 \) for some finite \(N \). Thus by the nonnegativity of \(a_{n,m} \),

\[
\sum_{(m,n) \in F} a_{n,m} \leq \sum_{(m,n) \in \{1, \cdots, N\}^2} a_{n,m} = \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n,m} \leq \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n,m}.
\]

Therefore, \(\sum_{n,m \in \mathbb{N}} a_{n,m} \leq \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n,m} \). It remains to show the reverse inequality \(\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n,m} \leq \sum_{n,m \in \mathbb{N}} a_{n,m} \). It suffices to show \(\sum_{n=1}^{N} \sum_{m=1}^{\infty} a_{n,m} \leq \sum_{n,m \in \mathbb{N}} a_{n,m} \) for each finite \(N \). Fix \(N \). As \(M \to \infty \), \(\sum_{m=1}^{M} a_{n,m} \to \sum_{n=1}^{\infty} a_{n,m} \) and so \(\sum_{n=1}^{N} \sum_{m=1}^{M} a_{n,m} \to \sum_{n=1}^{N} \sum_{m=1}^{\infty} a_{n,m} \). Thus it suffices to show that \(\sum_{n=1}^{N} \sum_{m=1}^{\infty} a_{n,m} = \sum_{n,m \in \mathbb{N}} a_{n,m} \). But

\[
\sum_{n=1}^{N} \sum_{m=1}^{M} a_{n,m} = \sum_{(n,m) \in \{1, \cdots, N\} \times \{1, \cdots, M\}} a_{n,m}
\]

and the claim follows. ■

1

Problem. Let \(f(x) = \sum_{n=0}^{\infty} a_n x^n \) be a power series with radius of convergence \(R \). If the power series converges at \(x = R \), prove that the series converges uniformly on \([0, R]\).

Proof.

Lemma. Let \(b_n \) satisfy \(b_1 \geq b_2 \geq \cdots \geq 0 \), and let \(\sum_{n=1}^{\infty} a_n \) be a series for which the partial sums are bounded, i.e. \(|A_n| = |\sum_{k=1}^{n} a_k| \leq M \) for all \(n \in \mathbb{N} \). Then for all \(n \in \mathbb{N} \),

\[
\left| \sum_{k=1}^{n} a_k b_k \right| \leq M b_1.
\]

Proof. By Abel’s summation-by-parts formula, we write

\[
\left| \sum_{k=1}^{n} a_k b_k \right| = \left| A_n b_{n+1} + \sum_{k=1}^{n} A_k (b_k - b_{k+1}) \right| \\
\leq M b_{n+1} + \sum_{k=1}^{n} M (b_k - b_{k+1}) \\
= M b_{n+1} + M (b_1 - b_{n+1}) = M b_1.
\]

To apply the lemma, we write

\[
f(x) = \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} (a_n R^n) \left(\frac{x}{R} \right)^n.
\]
To prove the series converges uniformly on \([0, R]\), it suffices to show the series is Cauchy. Since \(\sum_{n=0}^{\infty} a_n R^n\) converges by assumption, there exists \(N\) such that for all \(n > m \geq N\)

\[
\left| \sum_{k=m+1}^{n} a_k R^k \right| < \frac{\varepsilon}{2}.
\]

Fix \(m \in \mathbb{N}\). Observe that \(\sum_{j=1}^{\infty} a_{m+j} R^{m+j} \leq \frac{\varepsilon}{2}\) and \((\frac{X}{R})^{m+j}\) is monotonically decreasing. We can apply the lemma to the sequences with the first \(m\) terms omitted:

\[
\left| \sum_{k=m+1}^{n} (a_k R^k) \left(\frac{X}{R}\right)^k \right| \leq \frac{\varepsilon}{2} \left(\frac{X}{R}\right)^{m+1} < \varepsilon.
\]

Remark. This is a stronger form of Abel’s theorem (Theorem 8.2). By the uniform limit theorem, \(f(x) = \sum_{n=0}^{\infty} a_n x^n\) is continuous at \(x = R\) so \(\lim_{x \to R} f(x) = f(R) = \sum_{n=0}^{\infty} a_n R^n\).

\[\blacksquare\]

2

Problem. Use the formula \(\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \ |x| < 1\) to compute the exact value of the following series: \(\sum_{n=0}^{\infty} \frac{n}{2^n}, \sum_{n=0}^{\infty} \frac{n^2}{2^n}\).

Proof. The interval of convergence for all the power series in the problem is \(|x| < 1\). Differentiate \(\frac{1}{1-x}\) term by term,

\[
\left(\frac{1}{1-x} \right)' = \frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1} = 1 + 2x + 3x^2 + \cdots.
\]

Subtract \(\frac{1}{1-x}\) from \(\frac{1}{(1-x)^2}\), we have

\[
\frac{1}{(1-x)^2} - \frac{1}{1-x} = \sum_{n=1}^{\infty} nx^{n-1} - \sum_{n=0}^{\infty} x^n
= \sum_{n=1}^{\infty} nx^{n-1} - \sum_{n=1}^{\infty} x^{n-1}
= \sum_{n=1}^{\infty} (n-1)x^{n-1}
= \sum_{n=0}^{\infty} nx^n.
\]

Hence for \(|x| < 1\),

\[
\sum_{n=0}^{\infty} nx^n = \frac{x}{(1-x)^2}.
\]

So when \(x = \frac{1}{2}\), \(\sum_{n=0}^{\infty} \frac{n}{2^n} = 2\).

Differentiate \(\frac{1}{(1-x)^2} - \frac{1}{1-x}\) term by term,

\[
\left(\frac{1}{(1-x)^2} - \frac{1}{1-x} \right)' = \frac{2}{(1-x)^3} - \frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} n^2 x^{n-1}.
\]

4
To shift $\sum_{n=1}^{\infty} n^2 x^{n-1}$ to $\sum_{n=1}^{\infty} (n-1)^2 x^{n-1} = \sum_{n=0}^{\infty} n^2 x^n$, we subtract $\sum_{n=1}^{\infty} \frac{2}{(1-x)^3} - \frac{1}{(1-x)^2} + \frac{1}{1-x}$ from $\sum_{n=1}^{\infty} \frac{2}{(1-x)^3} - \frac{1}{(1-x)^2} + \frac{1}{1-x} = \sum_{n=1}^{\infty} n^2 x^{n-1} - 2 \sum_{n=1}^{\infty} n x^{n-1} + \sum_{n=1}^{\infty} x^{n-1}$

$$= \sum_{n=1}^{\infty} (n^2 - 2n + 1) x^{n-1}$$

$$= \sum_{n=1}^{\infty} (n-1)^2 x^{n-1}$$

$$= \sum_{n=0}^{\infty} n^2 x^n.$$

Hence for $|x| < 1$,

$$\sum_{n=0}^{\infty} n^2 x^n = \frac{2}{(1-x)^3} - \frac{3}{(1-x)^2} + \frac{1}{1-x} = \frac{x(x+1)}{(1-x)^3},$$

So when $x = \frac{1}{2}$, $\sum_{n=0}^{\infty} \frac{n^2}{2^n} = 6.$

3

Problem. Assume $f \in C^\infty(\mathbb{R})$. Suppose that for any $R > 0$, there exists M with the property $|f^{(n)}(x)| \leq M$, $\forall |x| \leq R$. Prove that the Taylor series $\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$ converges uniformly to f on any compact subset of \mathbb{R}.

Proof. Let $K \subset \mathbb{R}$ be a compact set and $R = \sup_{x \in K} |x-x_0| < \infty$. For $n \in \mathbb{N}$,

$$\left| \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k - f(x) \right| = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1} \right|$$

$$\leq M \frac{R^{n+1}}{(n+1)!},$$

by Taylor's theorem. But $\frac{R^n}{n!} \to 0$ as $\sum_{k=0}^{\infty} \frac{R^k}{k!} = e^R$ converges. Hence the Taylor series converges uniformly to f on any compact subset of \mathbb{R}.