Solution to Homework 9 Math 140B

Haiyu Huang

March 14, 2019

Disclaimer: The solution may contain errors or typos so use at your own risk.

Remark. Throughout this solution, I will use $\hat{f}(n) = \int_{-\pi}^{\pi} f(x)e^{-inx} dx$ as the Fourier coefficients of f instead of c_n in Rudin. Note that $\hat{f}: \mathbb{Z} \to \mathbb{C}$ is in $l^2(\mathbb{N})$. With this notation, Parsevel's theorem says $||f||_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = ||\hat{f}||_2^2$.

8.12

Remark. $\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$

Problem. Let $f : [-\pi, \pi] \to \mathbb{R}$, $f = \chi_{(-\delta, \delta)}$ and extend f periodically by $f(x + 2\pi) = f(x)$ for all x. *Proof.* (a) $\hat{f}(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \chi_{(-\delta, \delta)} dx = \frac{\delta}{\pi}$. For $n \neq 0$,

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \chi_{(-\delta,\delta)} e^{-inx} dx$$
$$= \frac{1}{2\pi} \int_{-\delta}^{\delta} e^{-inx} dx$$
$$= \frac{1}{2\pi} \frac{e^{-in\delta} - e^{in\delta}}{-in}$$
$$= \frac{1}{2\pi} \frac{e^{in\delta} - e^{-in\delta}}{2i}$$
$$= \frac{\sin(n\delta)}{\pi n}.$$

(b) At x = 0, f is locally Lipschitz so by the localization theorem (Theorem 8.14), the Fourier series $\sum_{n \in \mathbb{Z}} \hat{f}(n)$ converges to f(0) = 1 pointwise. Then

$$1 = \sum_{n \in \mathbb{Z}} \hat{f}(n) = 2 \sum_{n=1}^{\infty} \frac{\sin(n\delta)}{\pi n} + \frac{\delta}{\pi}.$$

Therefore, $\sum_{n=1}^{\infty} \frac{\sin(n\delta)}{\pi n} = \frac{\pi - \delta}{2}$.

(c) $||f||_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\chi_{(-\delta,\delta)}|^2 dx = \frac{\delta}{\pi}$. Parvesal's theorem implies

$$\frac{\delta}{\pi} = ||f||_2^2 = ||\hat{f}||_2^2 = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|^2 = \frac{\delta^2}{\pi^2} + 2\sum_{n=1}^{\infty} \frac{\sin^2(n\delta)}{\pi^2 n^2}.$$

Therefore, $\sum_{n=1}^{\infty} \frac{\sin^2(n\delta)}{n^2\delta} = \frac{\pi-\delta}{2}$.

(d) Let $\epsilon > 0$. Choose $R > \frac{3}{\epsilon}$ such that for all $T \ge R$, $\left| \int_0^T \left(\frac{\sin x}{x} \right)^2 dx - \int_0^\infty \left(\frac{\sin x}{x} \right)^2 dx \right| < \frac{\epsilon}{3}$. Let $\delta_m = \frac{R}{m}$. Observe that

$$\sum_{n=1}^{m} \frac{\sin^2(n\delta_m)}{n^2\delta_m} = \sum_{n=1}^{m} \delta_m \frac{\sin^2(n\delta_m)}{(n\delta_m)^2} \to \int_0^R \left(\frac{\sin x}{x}\right)^2 dx$$

as $m \to \infty$ because $\sum_{n=1}^{m} \delta_m \frac{\sin^2(n\delta_m)}{(n\delta_m)^2}$ is the Riemann sum of the integral $\int_0^R \left(\frac{\sin x}{x}\right)^2 dx$ with length interval δ_m . So there exists N > 0 such that for all $m \ge N$, $\left|\sum_{n=1}^m \frac{\sin^2(n\delta_m)}{n^2\delta_m} - \int_0^R \left(\frac{\sin x}{x}\right)^2 dx\right| < \frac{\epsilon}{3}$. Moreover,

$$\sum_{n=m+1}^{\infty} \frac{\sin^2(n\delta_m)}{n^2\delta_m} \le \frac{1}{\delta_m} \sum_{n=m+1}^{\infty} \frac{1}{n^2} < \frac{1}{\delta_m} \int_m^{\infty} \frac{1}{t^2} dt = \frac{1}{m\delta_m} = \frac{1}{R} < \frac{\epsilon}{3}$$

It follows that $\left|\sum_{n=1}^{\infty} \frac{\sin^2(n\delta_m)}{n^2\delta_m} - \int_0^{\infty} \left(\frac{\sin x}{x}\right)^2 dx\right| < \epsilon$ for $m \ge N$. Therefore,

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx = \lim_{m \to \infty} \sum_{n=1}^\infty \frac{\sin^2(n\delta_m)}{n^2\delta_m} = \lim_{m \to \infty} \frac{\pi - \delta_m}{2} = \frac{\pi}{2}.$$

(e) If $\delta = \frac{\pi}{2}$ in part (c), $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$.

8.13

Problem. Let f(x) = x if $0 \le x < 2\pi$, apply Parseval's theorem to conclude that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. *Proof.* When n = 0, $\hat{f}(0) = \frac{1}{2\pi} \int_0^{2\pi} x \, dx = \frac{1}{2\pi} \frac{(2\pi)^2}{2} = \pi$. When $n \ne 0$, by integral by parts

$$\hat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} x e^{-inx} dx$$

= $\frac{1}{2\pi} \left(\left[-\frac{1}{in} x e^{inx} \right]_0^{2\pi} + \frac{1}{in} \int_0^{2\pi} e^{-inx} dx \right)$
= $\frac{1}{2\pi} \left(-\frac{1}{in} 2\pi + 0 \right)$
= $-\frac{1}{in}$
= $\frac{i}{n}$.

So,

$$|\hat{f}(n)|^2 = \begin{cases} \pi^2 & n = 0\\ \frac{1}{n^2} & n \neq 0 \end{cases}$$

Note that

$$||f||_{2}^{2} = \frac{1}{2\pi} \int_{0}^{2\pi} |f(x)|^{2} dx = \frac{1}{2\pi} \int_{0}^{2\pi} x^{2} dx = \frac{1}{2\pi} \frac{(2\pi)^{3}}{3} = \frac{4\pi^{2}}{3}.$$

Hence by Parseval's Theorem,

$$\begin{split} ||f||_2^2 &= \sum_{n=-\infty}^{\infty} |\hat{f}(n)|^2 \\ &= \sum_{n=-\infty}^{-1} |\hat{f}(n)|^2 + |\hat{f}(0)|^2 + \sum_{n=1}^{\infty} |\hat{f}(n)|^2 \\ &= 2\sum_{n=1}^{\infty} \frac{1}{n^2} + \pi^2. \end{split}$$

Therefore,

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{2} \left(\frac{4\pi^2}{3} - \pi^2 \right) = \frac{\pi^2}{6}.$$

8.14

Problem. *If* $f(x) = (\pi - |x|)^2$ *on* $[-\pi, \pi]$ *, prove that*

$$f(x) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} \cos nx.$$

and deduce that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

Proof. $\hat{f}(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\pi - |x|)^2 dx = \frac{\pi^2}{3}$. For $n \neq 0$, $\hat{f}(n) = \frac{2}{n^2}$ by integral by parts. It is easy to check that f is locally Lipschitz on $[-\pi, \pi]$ so the Fourier series $\sum_{n \in \mathbb{Z}} \hat{f}(n) e^{inx}$ converges to f pointwise. Then

$$\begin{split} f(x) &= \hat{f}(0) + \sum_{n \in \mathbb{Z}^+} \hat{f}(n) e^{inx} + \sum_{n \in \mathbb{Z}^-} \hat{f}(n) e^{inx} \\ &= \hat{f}(0) + \sum_{n=1}^{\infty} \hat{f}(n) (\cos(nx) + i\sin(nx)) + \sum_{n=1}^{\infty} 2\hat{f}(n) (\cos(nx) - i\sin(nx)) \\ &= \hat{f}(0) + \sum_{n=1}^{\infty} 2\hat{f}(n) \cos(nx) \\ &= \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} \cos(nx). \end{split}$$

At x = 0, $f(0) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} = \pi^2$. This implies $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Note that $||f||_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\pi - |x|)^4 dx = \frac{1}{2\pi} \cdot \frac{2\pi^5}{5} = \frac{\pi^4}{5}$.

By Parseval's theorem,

$$||f||_{2}^{2} = ||\hat{f}||_{2}^{2} = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|^{2} = \frac{\pi^{4}}{9} + 2\sum_{n=1}^{\infty} \frac{4}{n^{4}}$$

Therefore, $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.

8.15

Remark. Define the convolution of f and g by $f * g(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)g(x-t)dt$. Note that

$$f * g(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)g(x-t)dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t)g(t)dt = g * f(x)$$

so the convolution is commutative. It is easy to see that the convolution is also linear and associative. As shown in Rudin, the N partial sum of the Fourier series of f is nothing but the convolution of f with the Dirichlet kernel D_N , i.e. $s_N(f) = \sum_{n=-N}^N \hat{f}(n)e^{inx} = f * D_N$.

Problem. Let $F_N = \frac{1}{N+1} \sum_{n=0}^N D_n(x)$. Prove that

$$F_N(x) = \frac{1}{N+1} \cdot \frac{1 - \cos(N+1)x}{1 - \cos x}$$

and that

(a)
$$F_N \ge 0$$
,

- (b) $\frac{1}{2\pi} \int_{-\pi}^{\pi} F_N(x) dx = 1$,
- (c) $F_N(x) \le \frac{1}{N+1} \cdot \frac{2}{1-\cos\delta} \text{ if } 0 < \delta \le |x| \le \pi.$

If s_N is the Nth partial sum of the Fourier series of f, consider the arithmetic means $\sigma_N = \frac{1}{N+1} \sum_{n=0}^N s_n$. Prove that $\sigma_N = f * F_N$ and prove Fejér's theorem: If f is continuous with period 2π , then $\sigma_N = f * F_N \rightarrow f$ uniformly on $[-\pi, \pi]$.

Proof. By trigonometric formula,

$$F_N(x) = \frac{1}{N+1} \sum_{n=0}^{N} \frac{\sin\left((N+\frac{1}{2})x\right)}{\sin(x/2)}$$

= $\frac{1}{N+1} \sum_{n=0}^{N} \frac{\sin\left((N+\frac{1}{2})x\right)\sin(x/2)}{\sin^2(x/2)}$
= $\frac{1}{N+1} \sum_{n=0}^{N} \frac{\frac{1}{2}\left(\cos(Nx) - \cos((N+1)x)\right)}{(1 - \cos x)/2}$
= $\frac{1}{N+1} \frac{1}{1 - \cos x} \sum_{n=0}^{N} \left(\cos(Nx) - \cos((N+1)x)\right)$
= $\frac{1}{N+1} \frac{1 - \cos((N+1)x)}{1 - \cos x}.$

Apply the formula $\sin^2 \theta = \frac{1-\cos 2\theta}{2}$ again, we can rewrite $F_N(x) = \frac{1}{N+1} \frac{\sin^2(\frac{N+1}{2}x)}{\sin^2(\frac{1}{2}x)}$, which shows that $F_N \ge 0$. We know that $\frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(x) dx = 1$. Then

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} F_N(x) dx = \frac{1}{N+1} \sum_{n=0}^{N} \frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(x) dx = 1.$$

Note that $1 - \cos(N+1)x \le 2$ and $1 - \cos\delta \le 1 - \cos x$ if $\delta \le |x|$ because $\cos x$ is decreasing from $[0, \pi]$. Therefore, $F_N(x) \le \frac{1}{N+1} \cdot \frac{2}{1-\cos\delta}$ if $0 < \delta \le |x| \le \pi$. Observe that

$$\sigma_N = \frac{1}{N+1} \sum_{n=0}^N s_n = \frac{1}{N+1} \sum_{k=0}^N (f * D_k) = f * \left(\frac{1}{N+1} \sum_{k=0}^N D_n\right) = f * F_N.$$

Using $\frac{1}{2\pi}\int_{-\pi}^{\pi}F_N(t)dt = 1$ in the first equality and $F_N \ge 0$ in the third inequality, we get

$$\begin{split} |f * F_N(x) - f(x)| &= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t) F_N(t) dt - f(x) \frac{1}{2\pi} \int_{-\pi}^{\pi} F_N(t) dt \right| \\ &= \frac{1}{2\pi} \left| \int_{-\pi}^{\pi} \left(f(x-t) - f(x) \right) F_N(t) dt \right| \\ &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x-t) - f(x)| F_N(t) dt. \end{split}$$

For a small neighborhood $(-\delta, \delta)$ of 0 we use continuity of f and outside that neighborhood the averaging comes to the rescue. Let $\epsilon > 0$. By the continuity of f, there exists δ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \frac{\epsilon}{2}$. So $\sup_{|t| < \delta} |f(x - t) - f(x)| < \frac{\epsilon}{2}$. Since f is continuous and $[-\pi, \pi]$ is compact, let $M = \sup_{t \in [-\pi, \pi]} |f(t)|$. So $|f(x - t) - f(x)| \le 2M$. Using the fact that F_N is an even function in the first inequality, the bound on F_N given by part (c) in the third inequality,

$$\begin{split} |f * F_N(x) - f(x)| &\leq \frac{1}{2\pi} \int_{-\delta}^{\delta} |f(x-t) - f(x)| F_N(t) dt + \frac{1}{2\pi} \cdot 2 \int_{\delta}^{\pi} (2M) F_N(t) dt \\ &\leq \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{\epsilon}{2} \cdot F_N(t) dt + \frac{2M}{\pi} \int_{\delta}^{\pi} F_N(t) dt \\ &\leq \frac{\epsilon}{2} \cdot \frac{1}{2\pi} \int_{-\delta}^{\delta} F_N(t) dt + \frac{2M}{\pi} \frac{1}{N+1} \cdot \frac{2}{1 - \cos\delta} (\pi - \delta) \\ &\leq \frac{\epsilon}{2} \cdot \frac{1}{2\pi} \int_{-\pi}^{\pi} F_N(t) dt + \frac{2M}{\pi} \frac{1}{N+1} \cdot \frac{2}{1 - \cos\delta} (\pi - \delta) \\ &= \frac{\epsilon}{2} + \frac{4M(\pi - \delta)}{\pi(N+1)(1 - \cos\delta)}. \end{split}$$

Finally, choose *N* so large that $\frac{4M(\pi-\delta)}{\pi(N+1)(1-\cos\delta)} < \frac{\epsilon}{2}$. It follows that $|f * F_N(x) - f(x)| < \epsilon$ for *N* sufficiently large. Therefore, $f * F_N \to f$ uniformly on $[-\pi, \pi]$.

Remark. The F_N is known as the Fejér kernel and the family $\{F_N\}_{N \in \mathbb{N}}$ is called an approximate identity: it is an identity in the limit with respect to convolution. We would hope that $s_N = f * D_N \rightarrow f$ uniformly. This is equivalent to $\{D_N\}_{N \in \mathbb{N}}$ forming an approximately identity. But even pointwise convergence of Fourier series is a rarity, let alone uniform convergence. For example, it can be shown that the Fourier series of "most" continuous functions on S^1 do not converge pointwise. However, a typical situation in analysis is that the means of a sequence behave better than the original sequence. So the average of the Dirichlet kernel, Fejér kernel, comes to the rescue.