Solution to Homework 9 Math 140B

Haiyu Huang

March 14, 2019

Disclaimer: The solution may contain errors or typos so use at your own risk.
Remark. Throughout this solution, I will use $\hat{f}(n)=\int_{-\pi}^{\pi} f(x) e^{-i n x} d x$ as the Fourier coefficients of f instead of c_{n} in Rudin. Note that $\hat{f}: \mathbb{Z} \rightarrow \mathbb{C}$ is in $l^{2}(\mathbb{N})$. With this notation, Parsevel's theorem says $\|f\|_{2}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\|\hat{f}\|_{2}^{2}$.

8.12

Remark. $\chi_{A}(x)=\left\{\begin{array}{ll}1 & x \in A \\ 0 & x \notin A\end{array}\right.$.
Problem. Let $f:[-\pi, \pi] \rightarrow \mathbb{R}, f=\chi_{(-\delta, \delta)}$ and extend f periodically by $f(x+2 \pi)=f(x)$ for all x.
Proof. (a) $\hat{f}(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \chi_{(-\delta, \delta)} d x=\frac{\delta}{\pi}$. For $n \neq 0$,

$$
\begin{aligned}
\hat{f}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \chi_{(-\delta, \delta)} e^{-i n x} d x \\
& =\frac{1}{2 \pi} \int_{-\delta}^{\delta} e^{-i n x} d x \\
& =\frac{1}{2 \pi} \frac{e^{-i n \delta}-e^{i n \delta}}{-i n} \\
& =\frac{1}{\pi n} \frac{e^{i n \delta}-e^{-i n \delta}}{2 i} \\
& =\frac{\sin (n \delta)}{\pi n} .
\end{aligned}
$$

(b) At $x=0, f$ is locally Lipschitz so by the localization theorem (Theorem 8.14), the Fourier series $\sum_{n \in \mathbb{Z}} \hat{f}(n)$ converges to $f(0)=1$ pointwise. Then

$$
1=\sum_{n \in \mathbb{Z}} \hat{f}(n)=2 \sum_{n=1}^{\infty} \frac{\sin (n \delta)}{\pi n}+\frac{\delta}{\pi} .
$$

Therefore, $\sum_{n=1}^{\infty} \frac{\sin (n \delta)}{\pi n}=\frac{\pi-\delta}{2}$.
(c) $\|f\|_{2}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\chi_{(-\delta, \delta)}\right|^{2} d x=\frac{\delta}{\pi}$. Parvesal's theorem implies

$$
\frac{\delta}{\pi}=\|f\|_{2}^{2}=\|\hat{f}\|_{2}^{2}=\sum_{n \in \mathbb{Z}}|\hat{f}(n)|^{2}=\frac{\delta^{2}}{\pi^{2}}+2 \sum_{n=1}^{\infty} \frac{\sin ^{2}(n \delta)}{\pi^{2} n^{2}}
$$

Therefore, $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n \delta)}{n^{2} \delta}=\frac{\pi-\delta}{2}$.
(d) Let $\epsilon>0$. Choose $R>\frac{3}{\epsilon}$ such that for all $T \geq R,\left|\int_{0}^{T}\left(\frac{\sin x}{x}\right)^{2} d x-\int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x\right|<\frac{\epsilon}{3}$. Let $\delta_{m}=\frac{R}{m}$. Observe that

$$
\sum_{n=1}^{m} \frac{\sin ^{2}\left(n \delta_{m}\right)}{n^{2} \delta_{m}}=\sum_{n=1}^{m} \delta_{m} \frac{\sin ^{2}\left(n \delta_{m}\right)}{\left(n \delta_{m}\right)^{2}} \rightarrow \int_{0}^{R}\left(\frac{\sin x}{x}\right)^{2} d x
$$

as $m \rightarrow \infty$ because $\sum_{n=1}^{m} \delta_{m} \frac{\sin ^{2}\left(n \delta_{m}\right)}{\left(n \delta_{m}\right)^{2}}$ is the Riemann sum of the integral $\int_{0}^{R}\left(\frac{\sin x}{x}\right)^{2} d x$ with length interval δ_{m}. So there exists $N>0$ such that for all $m \geq N,\left|\sum_{n=1}^{m} \frac{\sin ^{2}\left(n \delta_{m}\right)}{n^{2} \delta_{m}}-\int_{0}^{R}\left(\frac{\sin x}{x}\right)^{2} d x\right|<$ $\frac{\epsilon}{3}$. Moreover,

$$
\sum_{n=m+1}^{\infty} \frac{\sin ^{2}\left(n \delta_{m}\right)}{n^{2} \delta_{m}} \leq \frac{1}{\delta_{m}} \sum_{n=m+1}^{\infty} \frac{1}{n^{2}}<\frac{1}{\delta_{m}} \int_{m}^{\infty} \frac{1}{t^{2}} d t=\frac{1}{m \delta_{m}}=\frac{1}{R}<\frac{\epsilon}{3} .
$$

It follows that $\left|\sum_{n=1}^{\infty} \frac{\sin ^{2}\left(n \delta_{m}\right)}{n^{2} \delta_{m}}-\int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x\right|<\epsilon$ for $m \geq N$. Therefore,

$$
\int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x=\lim _{m \rightarrow \infty} \sum_{n=1}^{\infty} \frac{\sin ^{2}\left(n \delta_{m}\right)}{n^{2} \delta_{m}}=\lim _{m \rightarrow \infty} \frac{\pi-\delta_{m}}{2}=\frac{\pi}{2}
$$

(e) If $\delta=\frac{\pi}{2}$ in part (c), $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}$.

8.13

Problem. Let $f(x)=x$ if $0 \leq x<2 \pi$, apply Parseval's theorem to conclude that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
Proof. When $n=0, \hat{f}(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} x d x=\frac{1}{2 \pi} \frac{(2 \pi)^{2}}{2}=\pi$. When $n \neq 0$, by integral by parts

$$
\begin{aligned}
\hat{f}(n) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} x e^{-i n x} d x \\
& =\frac{1}{2 \pi}\left(\left[-\frac{1}{i n} x e^{i n x}\right]_{0}^{2 \pi}+\frac{1}{i n} \int_{0}^{2 \pi} e^{-i n x} d x\right) \\
& =\frac{1}{2 \pi}\left(-\frac{1}{i n} 2 \pi+0\right) \\
& =-\frac{1}{i n} \\
& =\frac{i}{n} .
\end{aligned}
$$

So,

$$
|\hat{f}(n)|^{2}=\left\{\begin{array}{cc}
\pi^{2} & n=0 \\
\frac{1}{n^{2}} & n \neq 0
\end{array}\right.
$$

Note that

$$
\|f\|_{2}^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{2} d x=\frac{1}{2 \pi} \int_{0}^{2 \pi} x^{2} d x=\frac{1}{2 \pi} \frac{(2 \pi)^{3}}{3}=\frac{4 \pi^{2}}{3} .
$$

Hence by Parseval's Theorem,

$$
\begin{aligned}
\|f\|_{2}^{2} & =\sum_{n=-\infty}^{\infty}|\hat{f}(n)|^{2} \\
& =\sum_{n=-\infty}^{-1}|\hat{f}(n)|^{2}+|\hat{f}(0)|^{2}+\sum_{n=1}^{\infty}|\hat{f}(n)|^{2} \\
& =2 \sum_{n=1}^{\infty} \frac{1}{n^{2}}+\pi^{2} .
\end{aligned}
$$

Therefore,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{1}{2}\left(\frac{4 \pi^{2}}{3}-\pi^{2}\right)=\frac{\pi^{2}}{6}
$$

8.14

Problem. If $f(x)=(\pi-|x|)^{2}$ on $[-\pi, \pi]$, prove that

$$
f(x)=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4}{n^{2}} \cos n x
$$

and deduce that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}, \quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}
$$

Proof. $\hat{f}(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}(\pi-|x|)^{2} d x=\frac{\pi^{2}}{3}$. For $n \neq 0, \hat{f}(n)=\frac{2}{n^{2}}$ by integral by parts. It is easy to check that f is locally Lipschitz on $[-\pi, \pi]$ so the Fourier series $\sum_{n \in \mathbb{Z}} \hat{f}(n) e^{i n x}$ converges to f pointwise. Then

$$
\begin{aligned}
f(x) & =\hat{f}(0)+\sum_{n \in \mathbb{Z}^{+}} \hat{f}(n) e^{i n x}+\sum_{n \in \mathbb{Z}^{-}} \hat{f}(n) e^{i n x} \\
& =\hat{f}(0)+\sum_{n=1}^{\infty} \hat{f}(n)(\cos (n x)+i \sin (n x))+\sum_{n=1}^{\infty} 2 \hat{f}(n)(\cos (n x)-i \sin (n x) \\
& =\hat{f}(0)+\sum_{n=1}^{\infty} 2 \hat{f}(n) \cos (n x) \\
& =\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4}{n^{2}} \cos (n x) .
\end{aligned}
$$

At $x=0, f(0)=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4}{n^{2}}=\pi^{2}$. This implies $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$. Note that

$$
\|f\|_{2}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi}(\pi-|x|)^{4} d x=\frac{1}{2 \pi} \cdot \frac{2 \pi^{5}}{5}=\frac{\pi^{4}}{5} .
$$

By Parseval's theorem,

$$
\|f\|_{2}^{2}=\|\hat{f}\|_{2}^{2}=\sum_{n \in \mathbb{Z}}|\hat{f}(n)|^{2}=\frac{\pi^{4}}{9}+2 \sum_{n=1}^{\infty} \frac{4}{n^{4}} .
$$

Therefore, $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$.

8.15

Remark. Define the convolution of f and g by $f * g(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) g(x-t) d t$. Note that

$$
f * g(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) g(x-t) d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-t) g(t) d t=g * f(x)
$$

so the convolution is commutative. It is easy to see that the convolution is also linear and associative. As shown in Rudin, the N partial sum of the Fourier series of f is nothing but the convolution of f with the Dirichlet kernel D_{N}, i.e. $s_{N}(f)=\sum_{n=-N}^{N} \hat{f}(n) e^{i n x}=f * D_{N}$.
Problem. Let $F_{N}=\frac{1}{N+1} \sum_{n=0}^{N} D_{n}(x)$. Prove that

$$
F_{N}(x)=\frac{1}{N+1} \cdot \frac{1-\cos (N+1) x}{1-\cos x}
$$

and that
(a) $F_{N} \geq 0$,
(b) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} F_{N}(x) d x=1$,
(c) $F_{N}(x) \leq \frac{1}{N+1} \cdot \frac{2}{1-\cos \delta}$ if $0<\delta \leq|x| \leq \pi$.

If s_{N} is the N th partial sum of the Fourier series of f, consider the arithmetic means $\sigma_{N}=\frac{1}{N+1} \sum_{n=0}^{N} s_{n}$. Prove that $\sigma_{N}=f * F_{N}$ and prove Fejér's theorem: If f is continuous with period 2π, then $\sigma_{N}=$ $f * F_{N} \rightarrow f$ uniformly on $[-\pi, \pi]$.
Proof. By trigonometric formula,

$$
\begin{aligned}
F_{N}(x) & =\frac{1}{N+1} \sum_{n=0}^{N} \frac{\sin \left(\left(N+\frac{1}{2}\right) x\right)}{\sin (x / 2)} \\
& =\frac{1}{N+1} \sum_{n=0}^{N} \frac{\sin \left(\left(N+\frac{1}{2}\right) x\right) \sin (x / 2)}{\sin ^{2}(x / 2)} \\
& =\frac{1}{N+1} \sum_{n=0}^{N} \frac{\frac{1}{2}(\cos (N x)-\cos ((N+1) x))}{(1-\cos x) / 2} \\
& =\frac{1}{N+1} \frac{1}{1-\cos x} \sum_{n=0}^{N}(\cos (N x)-\cos ((N+1) x)) \\
& =\frac{1}{N+1} \frac{1-\cos ((N+1) x)}{1-\cos x} .
\end{aligned}
$$

Apply the formula $\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$ again, we can rewrite $F_{N}(x)=\frac{1}{N+1} \frac{\sin ^{2}\left(\frac{N+1}{2} x\right)}{\sin ^{2}\left(\frac{1}{2} x\right)}$, which shows that $F_{N} \geq 0$. We know that $\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{N}(x) d x=1$. Then

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} F_{N}(x) d x=\frac{1}{N+1} \sum_{n=0}^{N} \frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{N}(x) d x=1 .
$$

Note that $1-\cos (N+1) x \leq 2$ and $1-\cos \delta \leq 1-\cos x$ if $\delta \leq|x|$ because $\cos x$ is decreasing from $[0, \pi]$. Therefore, $F_{N}(x) \leq \frac{1}{N+1} \cdot \frac{2}{1-\cos \delta}$ if $0<\delta \leq|x| \leq \pi$. Observe that

$$
\sigma_{N}=\frac{1}{N+1} \sum_{n=0}^{N} s_{n}=\frac{1}{N+1} \sum_{k=0}^{N}\left(f * D_{k}\right)=f *\left(\frac{1}{N+1} \sum_{k=0}^{N} D_{n}\right)=f * F_{N} .
$$

Using $\frac{1}{2 \pi} \int_{-\pi}^{\pi} F_{N}(t) d t=1$ in the first equality and $F_{N} \geq 0$ in the third inequality, we get

$$
\begin{aligned}
\left|f * F_{N}(x)-f(x)\right| & =\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-t) F_{N}(t) d t-f(x) \frac{1}{2 \pi} \int_{-\pi}^{\pi} F_{N}(t) d t\right| \\
& =\frac{1}{2 \pi}\left|\int_{-\pi}^{\pi}(f(x-t)-f(x)) F_{N}(t) d t\right| \\
& \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-t)-f(x)| F_{N}(t) d t .
\end{aligned}
$$

For a small neighborhood $(-\delta, \delta)$ of 0 we use continuity of f and outside that neighborhood the averaging comes to the rescue. Let $\epsilon>0$. By the continuity of f, there exists δ such that $|x-y|<\delta$ implies $|f(x)-f(y)|<\frac{\epsilon}{2}$. So $\sup _{|t|<\delta}|f(x-t)-f(x)|<\frac{\epsilon}{2}$. Since f is continuous and $[-\pi, \pi]$ is compact, let $M=\sup _{t \in[-\pi, \pi]}|f(t)|$. So $|f(x-t)-f(x)| \leq 2 M$. Using the fact that F_{N} is an even function in the first inequality, the bound on F_{N} given by part (c) in the third inequality,

$$
\begin{aligned}
\left|f * F_{N}(x)-f(x)\right| & \leq \frac{1}{2 \pi} \int_{-\delta}^{\delta}|f(x-t)-f(x)| F_{N}(t) d t+\frac{1}{2 \pi} \cdot 2 \int_{\delta}^{\pi}(2 M) F_{N}(t) d t \\
& \leq \frac{1}{2 \pi} \int_{-\delta}^{\delta} \frac{\epsilon}{2} \cdot F_{N}(t) d t+\frac{2 M}{\pi} \int_{\delta}^{\pi} F_{N}(t) d t \\
& \leq \frac{\epsilon}{2} \cdot \frac{1}{2 \pi} \int_{-\delta}^{\delta} F_{N}(t) d t+\frac{2 M}{\pi} \frac{1}{N+1} \cdot \frac{2}{1-\cos \delta}(\pi-\delta) \\
& \leq \frac{\epsilon}{2} \cdot \frac{1}{2 \pi} \int_{-\pi}^{\pi} F_{N}(t) d t+\frac{2 M}{\pi} \frac{1}{N+1} \cdot \frac{2}{1-\cos \delta}(\pi-\delta) \\
& =\frac{\epsilon}{2}+\frac{4 M(\pi-\delta)}{\pi(N+1)(1-\cos \delta)} .
\end{aligned}
$$

Finally, choose N so large that $\frac{4 M(\pi-\delta)}{\pi(N+1)(1-\cos \delta)}<\frac{\epsilon}{2}$. It follows that $\left|f * F_{N}(x)-f(x)\right|<\epsilon$ for N sufficiently large. Therefore, $f * F_{N} \rightarrow f$ uniformly on $[-\pi, \pi]$.

Remark. The F_{N} is known as the Fejér kernel and the family $\left\{F_{N}\right\}_{N \in \mathbb{N}}$ is called an approximate identity: it is an identity in the limit with respect to convolution. We would hope that $s_{N}=f *$ $D_{N} \rightarrow f$ uniformly. This is equivalent to $\left\{D_{N}\right\}_{N \in \mathbb{N}}$ forming an approximately identity. But even pointwise convergence of Fourier series is a rarity, let alone uniform convergence. For example, it can be shown that the Fourier series of "most" continuous functions on S^{1} do not converge pointwise. However, a typical situation in analysis is that the means of a sequence behave better than the original sequence. So the average of the Dirichlet kernel, Fejér kernel, comes to the rescue.

