
Solution to Homework 9
Math 140B

Haiyu Huang

March 14, 2019

Disclaimer: The solution may contain errors or typos so use at your own risk.

Remark. Throughout this solution, I will use f̂ (n) = ∫ π
−π f (x)e−i nxd x as the Fourier coefficients

of f instead of cn in Rudin. Note that f̂ :Z→C is in l 2(N). With this notation, Parsevel’s theorem
says || f ||22 = 1

2π

∫ π
−π | f (x)|2d x = || f̂ ||22.

8.12

Remark. χA(x) =
{

1 x ∈ A

0 x 6∈ A
.

Problem. Let f : [−π,π] →R, f =χ(−δ,δ) and extend f periodically by f (x +2π) = f (x) for all x.

Proof. (a) f̂ (0) = 1
2π

∫ π
−πχ(−δ,δ)d x = δ

π
. For n 6= 0,

f̂ (n) = 1

2π

∫ π

−π
χ(−δ,δ)e

−i nxd x

= 1

2π

∫ δ

−δ
e−i nxd x

= 1

2π

e−i nδ−e i nδ

−i n

= 1

πn

e i nδ−e−i nδ

2i

= sin(nδ)

πn
.

(b) At x = 0, f is locally Lipschitz so by the localization theorem (Theorem 8.14), the Fourier
series

∑
n∈Z f̂ (n) converges to f (0) = 1 pointwise. Then

1 = ∑
n∈Z

f̂ (n) = 2
∞∑

n=1

sin(nδ)

πn
+ δ

π
.

Therefore,
∑∞

n=1
sin(nδ)
πn = π−δ

2 .
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(c) || f ||22 = 1
2π

∫ π
−π |χ(−δ,δ)|2d x = δ

π
. Parvesal’s theorem implies

δ

π
= || f ||22 = || f̂ ||22 =

∑
n∈Z

| f̂ (n)|2 = δ2

π2
+2

∞∑
n=1

sin2(nδ)

π2n2
.

Therefore,
∑∞

n=1
sin2(nδ)

n2δ
= π−δ

2 .

(d) Let ε > 0. Choose R > 3
ε such that for all T ≥ R,

∣∣∣∫ T
0

( sin x
x

)2
d x −∫ ∞

0

( sin x
x

)2
d x

∣∣∣ < ε
3 . Let

δm = R
m . Observe that

m∑
n=1

sin2(nδm)

n2δm
=

m∑
n=1

δm
sin2(nδm)

(nδm)2
→

∫ R

0

(
sin x

x

)2

d x

as m →∞ because
∑m

n=1δm
sin2(nδm )

(nδm )2 is the Riemann sum of the integral
∫ R

0

( sin x
x

)2
d x with

length intervalδm . So there exists N > 0 such that for all m ≥ N ,
∣∣∣∑m

n=1
sin2(nδm )

n2δm
−∫ R

0

( sin x
x

)2
d x

∣∣∣<
ε
3 . Moreover,

∞∑
n=m+1

sin2(nδm)

n2δm
≤ 1

δm

∞∑
n=m+1

1

n2
< 1

δm

∫ ∞

m

1

t 2
d t = 1

mδm
= 1

R
< ε

3
.

It follows that
∣∣∣∑∞

n=1
sin2(nδm )

n2δm
−∫ ∞

0

( sin x
x

)2
d x

∣∣∣< ε for m ≥ N . Therefore,

∫ ∞

0

(
sin x

x

)2

d x = lim
m→∞

∞∑
n=1

sin2(nδm)

n2δm
= lim

m→∞
π−δm

2
= π

2
.

(e) If δ= π
2 in part (c),

∑∞
n=1

1
(2n−1)2 = π2

8 .
■

8.13

Problem. Let f (x) = x if 0 ≤ x < 2π, apply Parseval’s theorem to conclude that
∑∞

n=1
1

n2 = π2

6 .

Proof. When n = 0, f̂ (0) = 1
2π

∫ 2π
0 x d x = 1

2π
(2π)2

2 =π. When n 6= 0, by integral by parts

f̂ (n) = 1

2π

∫ 2π

0
xe−i nxd x

= 1

2π

([
− 1

i n
xe i nx

]2π

0
+ 1

i n

∫ 2π

0
e−i nxd x

)
= 1

2π

(− 1

i n
2π+0

)
=− 1

i n

= i

n
.
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So,

| f̂ (n)|2 =
{
π2 n = 0

1
n2 n 6= 0

Note that

|| f ||22 =
1

2π

∫ 2π

0
| f (x)|2d x = 1

2π

∫ 2π

0
x2 d x = 1

2π

(2π)3

3
= 4π2

3
.

Hence by Parseval’s Theorem,

|| f ||22 =
∞∑

n=−∞
| f̂ (n)|2

=
−1∑

n=−∞
| f̂ (n)|2 +| f̂ (0)|2 +

∞∑
n=1

| f̂ (n)|2

= 2
∞∑

n=1

1

n2
+π2.

Therefore,
∞∑

n=1

1

n2
= 1

2

(4π2

3
−π2)= π2

6
.

■

8.14

Problem. If f (x) = (π−|x|)2 on [−π,π], prove that

f (x) = π2

3
+

∞∑
n=1

4

n2
cosnx.

and deduce that ∞∑
n=1

1

n2
= π2

6
,

∞∑
n=1

1

n4
= π4

90
.

Proof. f̂ (0) = 1
2π

∫ π
−π(π− |x|)2d x = π2

3 . For n 6= 0, f̂ (n) = 2
n2 by integral by parts. It is easy to

check that f is locally Lipschitz on [−π,π] so the Fourier series
∑

n∈Z f̂ (n)e i nx converges to f
pointwise. Then

f (x) = f̂ (0)+ ∑
n∈Z+

f̂ (n)e i nx + ∑
n∈Z−

f̂ (n)e i nx

= f̂ (0)+
∞∑

n=1
f̂ (n)(cos(nx)+ i sin(nx))+

∞∑
n=1

2 f̂ (n)(cos(nx)− i sin(nx)

= f̂ (0)+
∞∑

n=1
2 f̂ (n)cos(nx)

= π2

3
+

∞∑
n=1

4

n2
cos(nx).
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At x = 0, f (0) = π2

3 +∑∞
n=1

4
n2 =π2. This implies

∑∞
n=1

1
n2 = π2

6 . Note that

|| f ||22 =
1

2π

∫ π

−π
| f (x)|2d x = 1

2π

∫ π

−π
(π−|x|)4d x = 1

2π
· 2π5

5
= π4

5
.

By Parseval’s theorem,

|| f ||22 = || f̂ ||22 =
∑

n∈Z
| f̂ (n)|2 = π4

9
+2

∞∑
n=1

4

n4
.

Therefore,
∑∞

n=1
1

n4 = π4

90 . ■

8.15

Remark. Define the convolution of f and g by f ∗ g (x) = 1
2π

∫ π
−π f (t )g (x − t )d t. Note that

f ∗ g (x) = 1

2π

∫ π

−π
f (t )g (x − t )d t = 1

2π

∫ π

−π
f (x − t )g (t )d t = g ∗ f (x)

so the convolution is commutative. It is easy to see that the convolution is also linear and associative.
As shown in Rudin, the N partial sum of the Fourier series of f is nothing but the convolution of
f with the Dirichlet kernel DN , i.e. sN ( f ) =∑N

n=−N f̂ (n)e i nx = f ∗DN .

Problem. Let FN = 1
N+1

∑N
n=0 Dn(x). Prove that

FN (x) = 1

N +1
· 1−cos(N +1)x

1−cos x
and that

(a) FN ≥ 0,

(b) 1
2π

∫ π
−πFN (x)d x = 1,

(c) FN (x) ≤ 1
N+1 · 2

1−cosδ if 0 < δ≤ |x| ≤π.

If sN is the N th partial sum of the Fourier series of f , consider the arithmetic meansσN = 1
N+1

∑N
n=0 sn .

Prove that σN = f ∗FN and prove Fejér’s theorem: If f is continuous with period 2π, then σN =
f ∗FN → f uniformly on [−π,π].

Proof. By trigonometric formula,

FN (x) = 1

N +1

N∑
n=0

sin
(
(N + 1

2 )x
)

sin(x/2)

= 1

N +1

N∑
n=0

sin
(
(N + 1

2 )x
)

sin(x/2)

sin2(x/2)

= 1

N +1

N∑
n=0

1
2 (cos(N x)−cos((N +1)x))

(1−cos x)/2

= 1

N +1

1

1−cos x

N∑
n=0

(cos(N x)−cos((N +1)x))

= 1

N +1

1−cos((N +1)x)

1−cos x
.
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Apply the formula sin2θ = 1−cos2θ
2 again, we can rewrite FN (x) = 1

N+1
sin2( N+1

2 x)

sin2( 1
2 x)

, which shows

that FN ≥ 0. We know that 1
2π

∫ π
−πDN (x)d x = 1. Then

1

2π

∫ π

−π
FN (x)d x = 1

N +1

N∑
n=0

1

2π

∫ π

−π
DN (x)d x = 1.

Note that 1−cos(N +1)x ≤ 2 and 1−cosδ≤ 1−cos x if δ≤ |x| because cos x is decreasing from
[0,π]. Therefore, FN (x) ≤ 1

N+1 · 2
1−cosδ if 0 < δ≤ |x| ≤π. Observe that

σN = 1

N +1

N∑
n=0

sn = 1

N +1

N∑
k=0

( f ∗Dk ) = f ∗
(

1

N +1

N∑
k=0

Dn

)
= f ∗FN .

Using 1
2π

∫ π
−πFN (t )d t = 1 in the first equality and FN ≥ 0 in the third inequality, we get

| f ∗FN (x)− f (x)| =
∣∣∣∣ 1

2π

∫ π

−π
f (x − t )FN (t )d t − f (x)

1

2π

∫ π

−π
FN (t )d t

∣∣∣∣
= 1

2π

∣∣∣∣∫ π

−π

(
f (x − t )− f (x)

)
FN (t )d t

∣∣∣∣
≤ 1

2π

∫ π

−π
| f (x − t )− f (x)|FN (t )d t .

For a small neighborhood (−δ,δ) of 0 we use continuity of f and outside that neighborhood
the averaging comes to the rescue. Let ε > 0. By the continuity of f , there exists δ such that
|x − y | < δ implies | f (x)− f (y)| < ε

2 . So sup|t |<δ | f (x − t )− f (x)| < ε
2 . Since f is continuous and

[−π,π] is compact, let M = supt∈[−π,π] | f (t )|. So | f (x − t )− f (x)| ≤ 2M . Using the fact that FN is
an even function in the first inequality, the bound on FN given by part (c) in the third inequality,

| f ∗FN (x)− f (x)| ≤ 1

2π

∫ δ

−δ
| f (x − t )− f (x)|FN (t )d t + 1

2π
·2

∫ π

δ
(2M)FN (t )d t

≤ 1

2π

∫ δ

−δ
ε

2
·FN (t )d t + 2M

π

∫ π

δ
FN (t )d t

≤ ε

2
· 1

2π

∫ δ

−δ
FN (t )d t + 2M

π

1

N +1
· 2

1−cosδ
(π−δ)

≤ ε

2
· 1

2π

∫ π

−π
FN (t )d t + 2M

π

1

N +1
· 2

1−cosδ
(π−δ)

= ε

2
+ 4M(π−δ)

π(N +1)(1−cosδ)
.

Finally, choose N so large that 4M(π−δ)
π(N+1)(1−cosδ) < ε

2 . It follows that | f ∗ FN (x)− f (x)| < ε for N
sufficiently large. Therefore, f ∗FN → f uniformly on [−π,π].

■
Remark. The FN is known as the Fejér kernel and the family {FN }N∈N is called an approximate
identity: it is an identity in the limit with respect to convolution. We would hope that sN = f ∗
DN → f uniformly. This is equivalent to {DN }N∈N forming an approximately identity. But even
pointwise convergence of Fourier series is a rarity, let alone uniform convergence. For example,
it can be shown that the Fourier series of "most" continuous functions on S1 do not converge
pointwise. However, a typical situation in analysis is that the means of a sequence behave better
than the original sequence. So the average of the Dirichlet kernel, Fejér kernel, comes to the rescue.
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