Problem 1. (Chapter 2, Exercise 9)
Let \(f(x) = \chi_{[a,b]}(x) \) be the characteristic function of the interval \([a, b] \subset [-\pi, \pi] \), that is,
\[
\chi_{[a,b]}(x) = \begin{cases}
1 & \text{if } x \in [a, b], \\
0 & \text{otherwise}.
\end{cases}
\]

(a) Show that the Fourier series of \(f \) is given by
\[
f(x) \sim \frac{b-a}{2\pi} + \sum_{n \neq 0} \frac{e^{-ina} - e^{-inb}}{2\pi in} e^{inx}.
\]
The sum extends over all positive and negative integers excluding 0.
(b) Show that if \(a \neq -\pi \) or \(b \neq \pi \) and \(a \neq b \), then the Fourier series does not converge absolutely for any \(x \).
(c) However, prove that the Fourier series converges at every point \(x \). What happens if \(a = -\pi \) and \(b = \pi \)?

Proof. (a)
\[
\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \chi_{[a,b]}(x)e^{-inx} \, dx
= \frac{1}{2\pi} \int_{a}^{b} e^{-inx} \, dx
= \begin{cases}
eq 0 & \text{if } n \neq 0, \\
\frac{b-a}{2\pi} & \text{if } n = 0.
\end{cases}
\]

(b) We have to show that for all \(x \),
\[
\sum_{n \in \mathbb{Z}} |\hat{f}(n)e^{inx}| = \sum_{n \in \mathbb{Z}} |\hat{f}(n)| = \infty.
\]
Ignoring the \(\hat{f}(0) \) term and the \(2\pi i \) term in the denominator, we reduce this to proving that
\[
\sum_{n \neq 0} \frac{|e^{-inb} (e^{in(b-a)} - 1)|}{|n|} = \infty.
\]
Applying Euler’s formula on the numerator, we see that the terms in the summand corresponding to \(n \) and \(-n \) are same and so we now want to prove that
\[
\sum_{n=1}^{\infty} \frac{\left|\sin(n\theta_0)\right|}{n} = \infty
\]
with \(\theta_0 = (b - a)/2 \).

Now, we would like to use the Hint given: “It suffices to prove that for many values of \(n \) one has \(| \sin n\theta_0 | \geq c > 0 \).” Since the Hint doesn’t say anything about \(c \), we would expect to have full control over it throughout the proof. Now let us suppose that we have chosen our \(c \) and we would like to find all \(n \) that satisfy \(| \sin n\theta_0 | \geq c \). The goal is to choose \(c \) in such a way that we have enough.

\[| \sin n\theta_0 | \geq c \] happens if and only if

\[n\theta_0 \in \bigcup_{k=0}^{\infty} [k\pi + \theta, (k+1)\pi - \theta], \Leftrightarrow n \in \bigcup_{k=0}^{\infty} [(k\pi + \theta)/\theta_0, ((k+1)\pi - \theta)/\theta_0] \]

where \(\theta \in (0, \pi/2) \) satisfies \(\sin \theta = c \). Let us denote the set above on the right by \(S \). Suppose \(n \notin S \). Then there exists \(k' \geq 0 \) such that \(n \in ((k'\pi - \theta)/\theta_0, (k'\pi + \theta)/\theta_0) \). Now suppose also that \(n + 1 \notin S \). Then there exists \(k'' \geq 0 \) such that \(n + 1 \in ((k''\pi - \theta)/\theta_0, (k''\pi + \theta)/\theta_0) \).

Obviously, \(k'' \geq k' \). So, we have the following inequalities:

\[n + 1 > \frac{k''\pi - \theta}{\theta_0} \text{ and } n < \frac{k'\pi + \theta}{\theta_0} \]

Subtracting the second one from the first, we get

\[1 = n + 1 - n > \frac{(k'' - k')\pi - 2\theta}{\theta_0} \]

So

\[k'' - k' < \frac{\theta_0 + 2\theta}{\pi} \]

Now, if we force \(\theta_0 + 2\theta \) to be less than \(\pi \), that forces \(k'' = k' \). Similarly, if we force the interval \(((k'\pi - \theta)/\theta_0, (k'\pi + \theta)/\theta_0)\) to have length less than 1, this implies that \(n \) and \(n + 1 \) cannot be both in that interval. So, we put these two conditions on \(\theta \) (which gives the condition on \(c \), i.e. \(\theta < \min\{\pi - \theta_0, \theta_0 \} \}). Note that the conditions on \(a \) and \(b \) imply that \(0 < \theta_0 < \pi \) and so we can choose a \(\theta > 0 \). With this choice of \(c \), we see that for all \(n \geq 1 \), at least one of \(2n - 1 \) or \(2n \) is an element of \(S \), i.e. either \(| \sin((2n - 1)\theta_0) | \geq c \) or \(| \sin 2n\theta_0 | \geq c \). Therefore, we have

\[\sum_{n=1}^{\infty} \frac{| \sin(n\theta_0) |}{n} \geq \sum_{n=1}^{\infty} \frac{c}{2n} = \infty. \]

This completes the proof.

(c) We have

\[S_N(f)(x) = \sum_{n=-N}^{N} \hat{f}(n)e^{inx} = \frac{b - a}{2\pi} + \sum_{n=1}^{N} \left(e^{in(x-a)} - e^{-in(x-a)} \right) - \frac{(e^{in(x-b)} - e^{-in(x-b)})}{2\pi in} \]

\[= \frac{b - a}{2\pi} + \frac{1}{\pi} \sum_{n=1}^{N} \frac{\sin n(x-a) - \sin n(x-b)}{n}. \]

We will apply the Dirichlet’s test of convergence to the series \(\sum_{n=1}^{\infty} \frac{\sin n\theta}{n} \) to show that it is convergent for any \(0 \leq \theta \leq 2\pi \). Recall the statement of Dirichlet’s test: If \(\{a_n\} \in \mathbb{C} \) and
\{b_n\} \in \mathbb{R} be such that \(b_n\) decreases to 0 and \(\sum_{n=1}^{N} a_n \leq M\) for all \(N \geq 1\) and for some \(M\) independent of \(N\), then \(\sum_{n=1}^{\infty} a_n b_n\) converges. Here, we put \(a_n = \sin n\theta\) and \(b_n = 1/n\).

The only thing to check here is that \(|\sum_{n=1}^{N} \sin n\theta|\) is bounded, independent of \(N\). But, the trigonometric identity \(\sum_{n=1}^{N} \sin n\theta = \frac{\cos(\theta/2) - \cos((N+1/2)\theta)}{2\sin(\theta/2)}\) gives \(\sum_{n=1}^{N} \sin n\theta \leq \frac{2}{\sin(\theta/2)}\) which is independent of \(N\). Note that the above argument doesn’t work for \(\theta = 0\) or \(2\pi\), but in these cases, it is trivial to prove. This shows that it converges for all \(x\).

If \(a = -\pi\) and \(b = \pi\), then \(f(x) = 1\) for all \(x\) and \(S_N(f)(x) = 1\) for all \(x\). So, convergence is trivial.

\[\square\]

Problem 2. (Chapter 2, Problem 1)

One can construct Riemann integrable functions on \([0, 1]\) that have a dense set of discontinuities as follows.

(a) Let \(f(x) = 0\) when \(x < 0\), and \(f(x) = 1\) if \(x \geq 0\). Choose a countable dense sequence \(\{r_n\}\) in \([0, 1]\). Then, show that the function

\[F(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} f(x - r_n)\]

is integrable and has discontinuities at all points of the sequence \(\{r_n\}\).

(b) Consider next

\[F(x) = \sum_{n=1}^{\infty} 3^{-n} g(x - r_n),\]

where \(g(x) = \sin 1/x\) when \(x \neq 0\), and \(g(0) = 0\). Then \(F\) is integrable, discontinuous at each \(x = r_n\), and fails to be monotonic in any subinterval of \([0, 1]\).

(c) The original example of Riemann is the function

\[F(x) = \sum_{n=1}^{\infty} \frac{(nx)}{n^2},\]

where \((x) = x\) for \(x \in (-1/2, 1/2]\) and \(x\) is continued to \(\mathbb{R}\) by periodicity, that is \((x+1) = (x)\).

It can be shown that \(F\) is discontinuous whenever \(x = m/2n\), where \(m, n \in \mathbb{Z}\) with \(m\) odd and \(n \neq 0\).

Proof. (a) For \(x \in [0, 1]\), let \(S_x = \{n|x \geq r_n\} \subset N\). If \(x < y\), then \(S_x \subset S_y\). Since \(F(x) = \sum_{n \in S_x} \frac{1}{n^2}\), if \(x < y\), we have \(F(x) \leq F(y)\). So \(F\) is monotonic. Since \(f\) is bounded and the series \(\sum \frac{1}{n^2}\) is convergent, \(F\) is also bounded. Since \(F\) is monotonic and bounded, it is integrable. Let \(k \in \mathbb{N}\). Choose a subsequence \(\{r_{n_i}\}\) of \(\{r_n\}\) such that \(r_{n_i}\) converges to \(r_k\) from below. Then

\[F(r_k) - F(r_{n_i}) = \sum_{n \in S_{r_k} - S_{r_{n_i}}} \frac{1}{n^2}.\]

The set \(S_{r_k} - S_{r_{n_i}}\) always contains the element \(k\). So, for all \(n_i\), \(F(x) - F(r_{n_i}) \geq \frac{1}{k^2}\). Therefore, \(F\) is not continuous at any \(r_k\).

Note that this argument does not work if \(r_k = 0\), but that is a small exception here.
(b) The sequence \(F_m(x) = \sum_{n=1}^{m} 3^{-n} g(x - r_n) \) is integrable as it is a bounded function with finitely many discontinuities. \(F_m \to F \) and this convergence is uniform because the \(g \)'s are all bounded by 1 and the series \(\sum 3^{-n} \) is convergent. So \(F \) is also integrable. Now, we shall prove non-monotonicity in any subinterval and discontinuity together. Let \((a, b)\) be any subinterval of \([0, 1]\). As \(\{r_n\}\) is dense in \([0, 1]\), there exists \(k \in \mathbb{N}\) such that \(r_k \in (a, b)\). Let \(x = r_k + \frac{1}{2m\pi + \frac{\pi}{2}}\), where \(m\) is some integer that is large enough so that \(x \in (a, b)\). Then

\[
F(x) - F(r_k) = \sum_{n=1}^{\infty} 3^{-n}(g(x - r_n) - g(r_k - r_n))
\]

\[
= \sum_{n=1}^{k-1} 3^{-n}(g(x - r_n) - g(r_k - r_n)) + 3^{-k}(g(x - r_k) - g(0)) + \sum_{n=k+1}^{\infty} 3^{-n}(g(x - r_n) - g(r_k - r_n))
\]

\[
= \sum_{n=1, n \neq k}^{k+1} 3^{-n}(g(x - r_n) - g(r_k - r_n)) + 3^{-k} + \sum_{n=k+2}^{\infty} 3^{-n}(g(x - r_n) - g(r_k - r_n))
\]

Let \(F_k(x)\) denote the function

\[
F_k(x) = \sum_{n=1, n \neq k}^{k+1} 3^{-n}(g(x - r_n) - g(r_k - r_n))
\]

Then \(F_k(x)\) is continuous at \(r_k\). Now, with this new notation, we have

\[
F(x) - F(r_k) = F_k(x) + 3^{-k} + \sum_{n=k+2}^{\infty} 3^{-n}(g(x - r_n) - g(r_k - r_n))
\]

\[
\geq F_k(x) + 3^{-k} + \sum_{n=k+2}^{\infty} (-2)3^{-n} = F_k(x) + 3^{-k} - 3^{-k-1} = F_k(x) + 2.3^{-k-1}
\]

Now since \(F_k\) is continuous at \(r_k\), there exists \(\delta > 0\) such that \(|F_k(x') - F_k(r_k)| < 3^{-k-1}\) for all \(x'\) such that \(|x' - r_k| < \delta\). But \(F_k(r_k) = 0\), so \(F_k(x') > -3^{-k-1}\) for all \(x'\) such that \(r_k < x' < r_k + \delta\). So, if we choose \(m\) large enough such that \(\frac{1}{2m\pi + \frac{\pi}{2}} < \delta\), then \(F(x) - F(r_k) > 3^{-k-1}\). Since \(m\) can be arbitrarily large, we get a sequence of \(x\) of this form converging to \(r_k\) but with \(F(x)\) not converging to \(F(r_k)\). This proves that \(F\) is discontinuous at \(r_k\). Now, note that this also proves that there exists \(x > r_k\) in \((a, b)\) such that \(F(x) > F(r_k)\). Now we repeat the same argument with \(y = r_k - \frac{1}{2m\pi + \frac{\pi}{2}}\) to get a \(y < r_k\) in \((a, b)\) such that \(F(y) > F(r_k)\).

So, we have obtained \(y < r_k < x\) in \((a, b)\) with \(F(x) > F(r_k)\) and \(F(y) > F(r_k)\). This proves that \(F\) is not monotonic in \((a, b)\).

(c) Let \(\alpha = \frac{a}{2b}\) be such that \(\gcd(a, b) = 1\) and \(a\) is odd. For \(k \geq 1\), define \(F_k\) by

\[
F_k(x) = \sum_{n=1, b|n}^{k} \frac{(nx)}{n^2}
\]
where the sum varies over all $1 \leq n \leq k$ such that b does not divide n. Let E denote the set

$$E = \mathbb{R} - \left\{ \frac{m}{2n} \middle| m, n \in \mathbb{Z}, m \text{ odd}, n \text{ does not divide } b \right\}$$

Then F_k is continuous on E for all $k \geq 1$. Also, $F_k \to F - G$ uniformly in \mathbb{R}, and hence in E, where G is the function given by

$$G(x) = \frac{1}{b^2} \sum_{n=1}^{\infty} \frac{(nbx)}{n^2}.$$

Because the convergence is uniform, $(F - G)|_{E}$ is a continuous function. Note that $\frac{a}{2b} \in E$. Let $\epsilon > 0$ be such that $\frac{a}{2b} + \epsilon \in E$. Then,

$$G\left(\frac{a}{2b}\right) - G\left(\frac{a}{2b} + \epsilon\right) = \frac{1}{b^2} \sum_{n=1}^{\infty} \frac{(an/2) - (an/2 + nb\epsilon)}{n^2} = \frac{1}{b^2} \sum_{n=1}^{\infty} \frac{(n/2) - (n/2 + nb\epsilon)}{n^2}$$

because $(.)$ is 1-periodic and a is odd. Let $N \in \mathbb{N}$ such that $4Nb\epsilon < 1$. Then

$$G\left(\frac{a}{2b}\right) - G\left(\frac{a}{2b} + \epsilon\right) = \frac{1}{b^2} \sum_{n=1}^{N} \frac{(n) - (n + 2nb\epsilon)}{(2n)^2} + \frac{1}{b^2} \sum_{n=1}^{N} \frac{(n - 1/2) - (n - 1/2 + (2n - 1)b\epsilon)}{(2n - 1)^2} + \frac{1}{b^2} \sum_{n=2N+1}^{\infty} \frac{(n/2) - (n/2 + nb\epsilon)}{n^2}$$

$$= \frac{1}{b^2} \sum_{n=1}^{N} \frac{-2nb\epsilon}{(2n)^2} + \frac{1}{b^2} \sum_{n=1}^{N} \frac{1/2 + 1/2 - 2nb\epsilon + b\epsilon}{(2n - 1)^2} + \frac{1}{b^2} \sum_{n=2N+1}^{\infty} \frac{(n/2) - (n/2 + nb\epsilon)}{n^2}$$

$$= -\frac{1}{b^2} \sum_{n=1}^{2N} \frac{nb\epsilon}{n^2} + \frac{1}{b^2} \sum_{n=1}^{N} \frac{1}{(2n - 1)^2} + \frac{1}{b^2} \sum_{n=2N+1}^{\infty} \frac{(n/2) - (n/2 + nb\epsilon)}{n^2}$$

$$\geq -\frac{1}{b^2} \sum_{n=1}^{2N} \frac{nb\epsilon}{n^2} + \frac{1}{b^2} \sum_{n=1}^{N} \frac{1}{(2n - 1)^2} - \frac{1}{b^2} \sum_{n=2N+1}^{\infty} \frac{1}{n^2}$$

(Note: All the $(.)$ in the denominators above are just parentheses and the $(.)$ in the numerators are the function $(.)$.)

We summarize the above calculations as

$$G\left(\frac{a}{2b}\right) - G\left(\frac{a}{2b} + \epsilon\right) \geq -\frac{1}{b^2} \sum_{n=1}^{2N} \frac{1}{2n^2} + \frac{1}{b^2} \sum_{n=1}^{N} \frac{1}{(2n - 1)^2} - \frac{1}{b^2} \sum_{n=2N+1}^{\infty} \frac{1}{n^2}$$
Now, as $N \to \infty$, the second term on the RHS above converges to $\pi^2/8 \approx 1.2337\ldots$. Choose N large enough such that $\sum_{n=1}^{N} \frac{1}{(2n-1)^2} \geq 1.2$ and such that $\sum_{n=2N+1}^{\infty} \frac{1}{n^2} \leq 0.2$ Then, we have

$$G\left(\frac{a}{2b}\right) - G\left(\frac{a}{2b} + \epsilon\right) \geq \frac{1}{b^2} \left(1 - \frac{\pi^2}{12}\right)$$

So, for the N chosen above, and for ϵ such that $\frac{a}{2b} + \epsilon \in E$ and $\epsilon < \frac{1}{4Nb}$, we have

$$G\left(\frac{a}{2b}\right) - G\left(\frac{a}{2b} + \epsilon\right) \geq \frac{1}{b^2} \left(1 - \frac{\pi^2}{12}\right)$$

This implies that $G|_E$ is not continuous at $\frac{a}{2b}$. Since $(F - G)|_E$ is continuous at $\frac{a}{2b}$, this implies that $F|_E$ is not continuous at $\frac{a}{2b}$, which implies that F is not continuous at $\frac{a}{2b}$. \qed