Practice Midterm 1

Problem 1. Prove that for any \(n \in \mathbb{N} \) and any \(a_1, ..., a_n \in \mathbb{R} \), the following holds true:
\[
|a_1 + a_2 + ... + a_n| \leq |a_1| + ... + |a_n|.
\]
Hint: for a rigorous proof you may want to use induction.

Problem 2. Prove that \(6^{\frac{1}{3}} \) is not a rational number.

Problem 3. a) Write down the definition of a convergent sequence.
 b) Prove that \(\lim_{n \to \infty} \frac{1}{n^2} = 0 \); Note: either you do a direct proof or else you prove any result that you are using.
 c) Prove that the sequence \(1 + (-1)^n \) does not converge.
 d) Prove that the limit of a convergent sequence is unique.

Problem 4. Let \((a_n) \) be a sequence in \(\mathbb{R} \). Prove that \((a_n) \) converges to 0 if and only if \((|a_n|) \) converges to 0.

Problem 5. Suppose that \(S \subset \mathbb{R} \) is a non-void bounded set. If \(\inf S = \sup S \), prove that \(S \) contains only one element.