HW 1

Problem 23.2 c) The coefficients are given by $a_{k}=1$ if $k=n$! (in other words if k is the factorial of some n) and $a_{k}=0$ otherwise; examples: $a_{1}=1, a_{2}=1, a_{3}=a_{4}=a_{5}=0, a_{6}=1, a_{7}=. .=a_{23}=0, a_{24}=0, \ldots$, beacuse $1=1!, 2=2!, 6=3!, 24=4$!. Now it is clear that $\sup \left\{a_{n}: n \geq\right.$ $N\}=1$ for every $N \in N$ since for every given N we have that $a_{N!}=1$ and $N!>N$. Therefore $\lim \sup \left|a_{n}\right|^{\frac{1}{n}}=1$. Thus $R=1$, so the series converges if $x \in(-1,1)$ and diverges if $|x|>1$.

Now if $x=1$, the series is simply $\sum 1^{n!}$ and since $\lim 1^{n!}=1 \neq 0$, the series diverge.

If $x=-1$, the series is simply $\sum(-1)^{n!}$ and $(-1)^{n!}=1$ for $n \geq 2(n!$ is even then) and the same argument as above shows divergence.
d) If $x=0$ the series converges. For $x \neq 0$ we can apply the ratio test

$$
\lim \frac{\frac{3^{n+1}}{\sqrt{n+1}} x^{2 n+3}}{\frac{3^{n}}{\sqrt{n}} x^{2^{2 n+1}}}=3 x^{2} \lim \frac{\sqrt{n}}{\sqrt{n+1}}=3 x^{2}
$$

Thus the series converges for $3 x^{2}<1$ and diverges for $3 x^{2}>1$ and the radius of convergence is $\frac{1}{\sqrt{3}}$.

If $x=\frac{1}{\sqrt{3}}$, then the series becomes

$$
\sum \frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{3}}
$$

and it diverges by the p-test $\left(p=\frac{1}{2}<1\right)$.
If $x=\frac{1}{\sqrt{3}}$, then the series becomes

$$
-\sum \frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{3}}
$$

and it diverges for the same reason as above.
Problem 23.7 a) If $\cos x \neq \pm 1$ (which happens when x is a multiple of π only), then $|\cos x|<1$ and $\lim f_{n}(x)=\lim (\cos x)^{n}=0$.
b) If $x=2 n \pi$ for some $n \in \mathbb{Z}$, then $\cos x=1$ and $\lim f_{n}(x)=\lim 1^{n}=1$.
c) If $x=(2 n+1) \pi$ for some $n \in \mathbb{Z}$, then $\cos x=-1$ and $\lim f_{n}(x)=$ $\lim (-1)^{n}$ does not exists.

Problem 24.2. a) $f(x)=\lim \frac{x}{n}=x \cdot \lim \frac{1}{n}=0$.
b) $\left|f_{n}(x)-f(x)\right|=\left|\frac{x}{n}-0\right|=\left|\frac{x}{n}\right| \leq \frac{1}{n}$. Given $\epsilon>0$, there exists N such that $\frac{1}{n}<\epsilon$ for all $n>N$, thus $\left|f_{n}(x)-f(x)\right| \leq \frac{1}{n}<\epsilon, \forall n>N$ and $\forall x \in[0,1]$.
c) We observe that $\left|f_{n}(n)-f(x)\right|=|1-0|=1, \forall n$ and this prohibits the uniform convergence. Indeed if we had uniform convergence, then by setting $\epsilon=\frac{1}{2}$ we would get some N such that $\left|f_{n}(x)-f(x)\right|<\frac{1}{2}$ for all $n>N$ and $x \in \mathbb{R}$; but the choice $x=n$ brings a contradiction!

