HW 2

24.6 (a) For any given $x_{0} \in[0,1]$,

$$
\lim _{n \rightarrow \infty}\left(x_{0}-\frac{1}{n}\right)^{2}=\lim _{n \rightarrow \infty}\left(x_{0}^{2}-\frac{2 x_{0}}{n}+\frac{1}{n^{2}}\right)=x_{0}^{2} .
$$

Hence the pointwise limit of $f_{n}(x)$ is $f(x):=x^{2}$.
(b) Yes.

Proof. For any given $\epsilon>0$, Since

$$
\left|f(x)-f_{n}(x)\right|=\left|x^{2}-x^{2}+\frac{2 x}{n}-\frac{1}{n^{2}}\right|=\left|\frac{2 x}{n}-\frac{1}{n^{2}}\right| \leq\left|\frac{2}{n}\right|+\left|\frac{1}{n^{2}}\right| \leq \frac{3}{n},
$$

when $N \geq \frac{3}{\epsilon},\left|f(x)-f_{n}(x)\right| \leq \epsilon$ for any $n \geq N$ and $x \in[0,1]$.
24.13 For arbitrary $x_{1}, x_{2} \in(a, b)$ and n, we have

$$
\begin{aligned}
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| & =\left|f\left(x_{1}\right)-f_{n}\left(x_{1}\right)+f_{n}\left(x_{1}\right)-f_{n}\left(x_{2}\right)+f_{n}\left(x_{2}\right)-f\left(x_{2}\right)\right| \\
& \leq\left|f\left(x_{1}\right)-f_{n}\left(x_{1}\right)\right|+\left|f_{n}\left(x_{1}\right)-f_{n}\left(x_{2}\right)\right|+\left|f_{n}\left(x_{2}\right)-f\left(x_{2}\right)\right|
\end{aligned}
$$

Given $\epsilon>0$, since f_{n} converge to f uniformly, there exists N such that $\left|f(x)-f_{n}(x)\right| \leq \epsilon / 3$ for all $x \in(a, b)$ when $n \geq N$, and particularly, both $\left|f\left(x_{1}\right)-f_{N}\left(x_{1}\right)\right|,\left|f\left(x_{2}\right)-f_{N}\left(x_{2}\right)\right| \leq \epsilon / 3$. Besides, there exists $\delta>0$ such that $\left|f_{N}\left(x_{1}\right)-f_{N}\left(x_{2}\right)\right| \leq \epsilon / 3$ for all x_{1}, x_{2} satisfying $\left|x_{1}-x_{2}\right|<\delta$ because f_{N} is uniformly continuous. So for all $x_{1}, x_{2} \in(a, b)$ satisfying $\left|x_{1}-x_{2}\right|<\delta$,

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq \epsilon .
$$

And this implies that $f(x)$ is uniformly continuous.
25.4 Given arbitrary $\epsilon>0$. For any m, k,

$$
\left|f_{m}(x)-f_{k}(x)\right| \leq\left|f_{m}(x)-f(x)\right|+\left|f_{k}(x)-f(x)\right| .
$$

Because $f_{n} \rightarrow f$ uniformly, there exists N such that $\left|f_{n}(x)-f(x)\right| \leq$ $\epsilon / 2$ for all $n \geq N$ and for all $x \in S$. Hence if $m, k \geq N$,

$$
\left|f_{m}(x)-f_{k}(x)\right|=\left|f_{m}(x)-f(x)\right|+\left|f_{k}(x)-f(x)\right| \leq \epsilon
$$

for any $x \in S$, which means the sequence $\left\{f_{n}\right\}$ is Cauchy.

