HW 3

Problem 25.10 a) For each $x \in[0,1)$ we have

$$
\left|\frac{x^{n}}{1+x^{n}}\right| \leq x^{n}
$$

and $\sum_{n} x^{n}$ converges since $0 \leq x<1$, thus by the comparison test the series $\sum \frac{x^{n}}{1+x^{n}}$ converges.
b) We have the following inequality:

$$
\left|\frac{x^{n}}{1+x^{n}}\right| \leq\left|x^{n}\right| \leq a^{n}, \quad \forall 0 \leq x \leq a
$$

and since the series $\sum a^{n}$ converges $(|a|<1)$, by the Weierstras M-test we obtain uniform convergence of the series.
c) We will show that the convergence is not uniform, but do so arguing by contradiction. So assume that $\sum \frac{x^{n}}{1+x^{n}}$ converges uniformly on $[0,1)$. That implies that the series is uniformly Cauchy; let $\epsilon=\frac{1}{4}$ - there exists N such that

$$
\left|\sum_{k=m}^{n} \frac{x^{n}}{1+x^{n}}\right|<\frac{1}{4}, \quad \forall x \in[0,1), \forall n \geq m>N
$$

Let $n=m=N+1$, therefore

$$
\frac{x^{N+1}}{1+x^{N+1}}<\frac{1}{4}, \forall x \in[0,1) .
$$

But this implies $\lim _{x \rightarrow 1-} \frac{x^{N+1}}{1+x^{N+1}} \leq \frac{1}{4}$ which contradicts the fact that $\lim _{x \rightarrow 1-} \frac{x^{N+1}}{1+x^{N+1}}=$ $\frac{1}{1+1}=\frac{1}{2}>\frac{1}{4}$.

Problem 25.14. Let $g=\sum g_{k}$; thus we know $\sum g_{k}$ converges uniformly to g on S. We know that there exists $M>0$ such that $|h(x)| \leq M, \forall x \in S$. We let $\sigma_{n}=\sum_{k=1}^{n} g_{k}$ and note that $h \sigma_{n}=\sum_{k=1}^{n} h g_{k}$.

Given $\epsilon>0$, there exists N such that

$$
\left|\sigma_{n}(x)-g(x)\right|<\frac{\epsilon}{M}, \quad \forall n>N, \quad \forall x \in S
$$

Therefore
$\left|h(x) \sigma_{n}(x)-h(x) g(x)\right|=|h(x)|\left|\sigma_{n}(x)-g(x)\right|<M \frac{\epsilon}{M}=\epsilon, \quad \forall n>N, \quad \forall x \in S$,
and this implies that $\sum h g_{k}$ converges uniformly.
Problem 26.6. a) We know from Lecture 2, Example 4 that the radius of convergence for $s(x)$ is ∞; a similar argument shows that the radius of
convergence for $c(x)$ is ∞. Thus we can differentiate term by term:
$s^{\prime}(x)=\left(\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}\right)^{\prime}=\sum_{k=0}^{\infty}(-1)^{k}\left(\frac{x^{2 k+1}}{(2 k+1)!}\right)^{\prime}=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}=c(x)$.
Similarly
$c^{\prime}(x)=\left(\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}\right)^{\prime}=\sum_{k=1}^{\infty}(-1)^{k} \frac{x^{2 k-1}}{(2 k-1)!}=\sum_{k=0}^{\infty}(-1)^{k+1} \frac{x^{2 k+1}}{(2 k+1)!}=-s(x) ;$
In the latter we have made the change $k \rightarrow k+1$.
b) From the above we have that $\left(s^{2}+c^{2}\right)^{\prime}=2 s s^{\prime}+2 c c^{\prime}=2 s c-2 s c=0$.
c) From b) we obtain that $s^{2}(x)+c^{2}(x)=$ constant $=s^{2}(0)+c^{2}(0)=$ $0+1=1, \forall x \in \mathbb{R}$.

