HW 4

28.3(b) By definition, consider the following:

$$
\frac{f(y)-f(x)}{y-x}=\frac{y^{1 / 3}-x^{1 / 3}}{y-x} .
$$

Since
$y-x=\left(y^{1 / 3}\right)^{3}-\left(x^{1 / 3}\right)^{3}=\left(y^{1 / 3}-x^{1 / 3}\right)\left(y^{2 / 3}+y^{1 / 3} x^{1 / 3}+x^{2 / 3}\right)$,
we have
$\frac{f(y)-f(x)}{y-x}=\frac{y^{1 / 3}-x^{1 / 3}}{\left(y^{1 / 3}-x^{1 / 3}\right)\left(y^{2 / 3}+y^{1 / 3} x^{1 / 3}+x^{2 / 3}\right)}=\frac{1}{y^{2 / 3}+y^{1 / 3} x^{1 / 3}+x^{2 / 3}}$.
So when $x \neq 0$,

$$
f^{\prime}(x):=\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}=\lim _{y \rightarrow x} \frac{1}{y^{2 / 3}+y^{1 / 3} x^{1 / 3}+x^{2 / 3}}=\frac{1}{3} x^{-2 / 3} .
$$

28.8 (a) For any $x \in \mathbb{R}$, we have $f(x) \leq x^{2}$, so $|f(x)-f(0)| \leq x^{2}-0=$ x^{2}. This means $\lim _{x \rightarrow 0}|f(x)-f(0)| \leq \lim _{x \rightarrow 0} x^{2}=0$. So $\lim _{x \rightarrow 0}|f(x)-f(0)|=0$ and we know $f(x)$ is continuous at $x=0$.
(b) If $0 \neq x \in \mathbb{Q}$, then $f(x)=x^{2}>0$. Let $x_{k}:=x+\sqrt{2} / k$, then $x_{k} \notin \mathbb{Q}$ for any k and $x_{k} \rightarrow x$. Therefore, $f\left(x_{k}\right)=0$ and hence $\lim _{k \rightarrow \infty} f\left(x_{k}\right)=0 \neq f(x)$. Whicn means $f(x)$ is discontinuous at x.
If $0 \neq x \notin \mathbb{Q}$, then $f(x)=0$. For any $k \in \mathbb{N}$, let x_{k} be a rational number in $(x-1 / k, x+1 / k)$ (such x_{k} always exists since \mathbb{Q} is dense in \mathbb{R}. Then $x_{k} \rightarrow 0$ and $f\left(x_{k}\right)=x_{k}^{2}$, which means $\lim _{k \rightarrow \infty} f\left(x_{k}\right)=x^{2} \neq 0=f(x)$. So $f(x)$ is discontinuous at x.
(c) Since

$$
\left|\frac{f(x)-f(0)}{x-0}\right| \leq\left|\frac{x^{2}}{x}\right|=|x| .
$$

We have

$$
\lim _{x \rightarrow 0}\left|\frac{f(x)-f(0)}{x-0}\right| \leq \lim _{x \rightarrow 0}|x|=0
$$

So

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0
$$

and we know $f(x)$ is differentiable when $x=0$.
29.3 (a) Since $f(0)=0$ and $f(2)=1$, by the mean value theorem, we know there exists $x \in(0,3)$ such that $f^{\prime}(x)=\frac{1-0}{2-0}=1 / 2$.
(b) Because $f(1)=f(2)=1$, by the mean value theorem (or Rolle's), there exists $y \in(1,2)$ such that $f^{\prime}(y)=0$. Thus by Theorem 29.8, there exists $z \in(x, y)(o r(y, x)) \subseteq(0,2)$ such that $f^{\prime}(z)=1 / 7$ since $1 / 7 \in(0,1 / 2)=\left(f^{\prime}(y), f^{\prime}(x)\right)$.

