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Problem 30.3: a) We have the following

lim
x→∞

x− sinx

x
= lim

x→∞
(1− sinx

x
) = 1− lim

x→∞

sinx

x
= 1,

the latter one being justified by

|sinx

x
| ≤ 1

x

and the fact that limx→∞
1
x = 0. Note that L’Hospital would not work here

since

lim
x→∞

(x− sinx)′

(x)′
= lim

x→∞
(− cosx),

which does not exists.
c) Since limx→0+ 1 + cosx = 2 and limx→0+ ex − 1 = 0+ it follows that

lim
x→0+

1 + cosx

ex − 1
=∞.

This is not a 0
0 case, so one cannot apply L’Hospital; a wrong application

would lead to

lim
x→0+

(1 + cosx)′

(ex − 1)′
= lim

x→0+

− sinx

ex
= 0

and this is the wrong answer.

Problem 31.2. It is clear that we have (sinhx)′ = coshx and (coshx)′ =

sinhx. Therefore (sinhx)(n) = sinhx for n even and (sinhx)(n) = sinhx for

n odd. Similarly (coshx)(n) = coshx for n even and (coshx)(n) = sinhx for
n odd.

We also have cosh 0 = 1, sinh 0 = 0 thus the Taylor series of coshx at 0 is
∞∑
k=0

cosh(k)(0)

k!
xk =

∞∑
l=0

1

(2l)!
x2l

and the Taylor series of sinhx at 0 is
∞∑
k=0

sinh(k)(0)

k!
xk =

∞∑
l=0

1

(2l + 1)!
x2l+1.

Given some M > 0 we also have | sinhx| ≤ eM+e−M

2 for all x ∈ [−M,M ]

and | coshx| ≤ eM+e−M

2 for all x ∈ [−M,M ]. Thus we can conclude that

|(sinhx)(n)|, |(coshx)(n)| ≤ eM + e−M

2
, ∀x ∈ [−M,M ],∀n.
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Therefore we can conclude that coshx and sinhx equal their corresponding
Taylor series for every x ∈ [−M,M ]; since M was arbitrary, it follows that
coshx and sinhx equal their corresponding Taylor series for every x ∈ R.

Problem 3. The purpose of this problem is to establish that

(1) ln(1 + x) =
∞∑
k=1

(−1)k+1x
k

k
, ∀x ∈ (−1, 1],

using the Taylor series theory, but without using the power series theory as
it was done in Chapter 4.26, Example 1.

a) Following the argument in Example 2 in Chapter 5.31, where the equal-
ity (1) is shown for x = 1, prove that the equality (1) holds true for x ∈ [0, 1].

Solution. Based on Taylor theorem and the computations for fn(x) (al-
ready done in Example 2 in Chapter 5.31) we have

Rn(x) =
f (n)(yn)

n!
xn =

(−1)n+1(n− 1)!

n!(1 + yn)n
xn =

(−1)n+1

n(1 + yn)n
xn,

for some yn ∈ (0, x). Thus

|Rn(x)| ≤ | (−1)n+1

n(1 + yn)n
xn| = xn

n(1 + yn)n
≤ 1

n

since 0 ≤ x ≤ 1 and 1 + yn ≥ 1. Therefore limn→∞Rn(x) = 0 and we can
conclude that (1) holds true.

b) Following the sane strategy as in a), prove the equality (1) holds true
for x ∈ [−1

2 , 0] as well.
Solution. The same argument as above gives

Rn(x) =
(−1)n+1

n(1 + yn)n
xn =

(−1)n+1

n

(
x

1 + yn

)n

.

for some yn ∈ (x, 0). Since −1
2 ≤ x ≤ 0 it follows that −1

2 < yn, thus

1 + yn > 1
2 and | x

1+y | ≤ 1. From this we obtain

|Rn(x)| ≤ 1

n
,

therefore limn→∞Rn(x) = 0 and we can conclude that (1) holds true.
c) Prove that (1) holds true for x ∈ (−1,−1

2).
Solution. Here we use instead the other form of Rn from Corollary 31.6:

Rn(x) = x · (x− yn)n−1

(n− 1)!
fn(yn) = x · (−1)n+1(x− yn)n−1

(1 + yn)n
.

for some yn ∈ (x, 0). From the proof of the Binomial series theorem, we
have that |x−yn1+yn

| ≤ x, therefore

|Rn(x)| = |x|
1 + yn

|x− yn
1 + yn

|n−1 ≤ |x|
1 + x

|x|n−1.
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Since limn→∞ |x|n = 0, the conclusion is that (1) holds true in this case as
well.


