HW 6

Problem 30.3: a) We have the following

$$
\lim _{x \rightarrow \infty} \frac{x-\sin x}{x}=\lim _{x \rightarrow \infty}\left(1-\frac{\sin x}{x}\right)=1-\lim _{x \rightarrow \infty} \frac{\sin x}{x}=1,
$$

the latter one being justified by

$$
\left|\frac{\sin x}{x}\right| \leq \frac{1}{x}
$$

and the fact that $\lim _{x \rightarrow \infty} \frac{1}{x}=0$. Note that L'Hospital would not work here since

$$
\lim _{x \rightarrow \infty} \frac{(x-\sin x)^{\prime}}{(x)^{\prime}}=\lim _{x \rightarrow \infty}(-\cos x)
$$

which does not exists.
c) Since $\lim _{x \rightarrow 0+} 1+\cos x=2$ and $\lim _{x \rightarrow 0+} e^{x}-1=0+$ it follows that

$$
\lim _{x \rightarrow 0+} \frac{1+\cos x}{e^{x}-1}=\infty
$$

This is not a $\frac{0}{0}$ case, so one cannot apply L'Hospital; a wrong application would lead to

$$
\lim _{x \rightarrow 0+} \frac{(1+\cos x)^{\prime}}{\left(e^{x}-1\right)^{\prime}}=\lim _{x \rightarrow 0+} \frac{-\sin x}{e^{x}}=0
$$

and this is the wrong answer.
Problem 31.2. It is clear that we have $(\sinh x)^{\prime}=\cosh x$ and $(\cosh x)^{\prime}=$ $\sinh x$. Therefore $(\sinh x)^{(n)}=\sinh x$ for n even and $(\sinh x)^{(n)}=\sinh x$ for n odd. Similarly $(\cosh x)^{(n)}=\cosh x$ for n even and $(\cosh x)^{(n)}=\sinh x$ for n odd.

We also have $\cosh 0=1, \sinh 0=0$ thus the Taylor series of $\cosh x$ at 0 is

$$
\sum_{k=0}^{\infty} \frac{\cosh ^{(k)}(0)}{k!} x^{k}=\sum_{l=0}^{\infty} \frac{1}{(2 l)!} x^{2 l}
$$

and the Taylor series of $\sinh x$ at 0 is

$$
\sum_{k=0}^{\infty} \frac{\sinh ^{(k)}(0)}{k!} x^{k}=\sum_{l=0}^{\infty} \frac{1}{(2 l+1)!} x^{2 l+1}
$$

Given some $M>0$ we also have $|\sinh x| \leq \frac{e^{M}+e^{-M}}{2}$ for all $x \in[-M, M]$ and $|\cosh x| \leq \frac{e^{M}+e^{-M}}{2}$ for all $x \in[-M, M]$. Thus we can conclude that

$$
\left|(\sinh x)^{(n)}\right|,\left|(\cosh x)^{(n)}\right| \leq \frac{e^{M}+e^{-M}}{2}, \quad \forall x \in[-M, M], \forall n .
$$

Therefore we can conclude that $\cosh x$ and $\sinh x$ equal their corresponding Taylor series for every $x \in[-M, M]$; since M was arbitrary, it follows that $\cosh x$ and $\sinh x$ equal their corresponding Taylor series for every $x \in \mathbb{R}$.

Problem 3. The purpose of this problem is to establish that

$$
\begin{equation*}
\ln (1+x)=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{x^{k}}{k}, \quad \forall x \in(-1,1] \tag{1}
\end{equation*}
$$

using the Taylor series theory, but without using the power series theory as it was done in Chapter 4.26, Example 1.
a) Following the argument in Example 2 in Chapter 5.31, where the equality (1) is shown for $x=1$, prove that the equality (1) holds true for $x \in[0,1]$.

Solution. Based on Taylor theorem and the computations for $f^{n}(x)$ (already done in Example 2 in Chapter 5.31) we have

$$
R_{n}(x)=\frac{f^{(n)}\left(y_{n}\right)}{n!} x^{n}=\frac{(-1)^{n+1}(n-1)!}{n!\left(1+y_{n}\right)^{n}} x^{n}=\frac{(-1)^{n+1}}{n\left(1+y_{n}\right)^{n}} x^{n},
$$

for some $y_{n} \in(0, x)$. Thus

$$
\left|R_{n}(x)\right| \leq\left|\frac{(-1)^{n+1}}{n\left(1+y_{n}\right)^{n}} x^{n}\right|=\frac{x^{n}}{n\left(1+y_{n}\right)^{n}} \leq \frac{1}{n}
$$

since $0 \leq x \leq 1$ and $1+y_{n} \geq 1$. Therefore $\lim _{n \rightarrow \infty} R_{n}(x)=0$ and we can conclude that (1) holds true.
b) Following the sane strategy as in a), prove the equality (1) holds true for $x \in\left[-\frac{1}{2}, 0\right]$ as well.

Solution. The same argument as above gives

$$
R_{n}(x)=\frac{(-1)^{n+1}}{n\left(1+y_{n}\right)^{n}} x^{n}=\frac{(-1)^{n+1}}{n}\left(\frac{x}{1+y_{n}}\right)^{n} .
$$

for some $y_{n} \in(x, 0)$. Since $-\frac{1}{2} \leq x \leq 0$ it follows that $-\frac{1}{2}<y_{n}$, thus $1+y_{n}>\frac{1}{2}$ and $\left|\frac{x}{1+y}\right| \leq 1$. From this we obtain

$$
\left|R_{n}(x)\right| \leq \frac{1}{n}
$$

therefore $\lim _{n \rightarrow \infty} R_{n}(x)=0$ and we can conclude that (1) holds true.
c) Prove that (1) holds true for $x \in\left(-1,-\frac{1}{2}\right)$.

Solution. Here we use instead the other form of R_{n} from Corollary 31.6:

$$
R_{n}(x)=x \cdot \frac{\left(x-y_{n}\right)^{n-1}}{(n-1)!} f^{n}\left(y_{n}\right)=x \cdot \frac{(-1)^{n+1}\left(x-y_{n}\right)^{n-1}}{\left(1+y_{n}\right)^{n}} .
$$

for some $y_{n} \in(x, 0)$. From the proof of the Binomial series theorem, we have that $\left|\frac{x-y_{n}}{1+y_{n}}\right| \leq x$, therefore

$$
\left|R_{n}(x)\right|=\frac{|x|}{1+y_{n}}\left|\frac{x-y_{n}}{1+y_{n}}\right|^{n-1} \leq \frac{|x|}{1+x}|x|^{n-1} .
$$

Since $\lim _{n \rightarrow \infty}|x|^{n}=0$, the conclusion is that (1) holds true in this case as well.

