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31.5 (a) We imitate the proof shown in Example 3, Chapter 31:

Fisrt we show g(n)(x) = e−1/x
2
pn(1/x) for some polynomial pn

by induction. Asssume this is true for n = k. Then

g(k+1)(x) = (e−1/x
2
pk(1/x))′ = e−1/x

2
(2/x3)pk(1/x) + e−1/x

2
(pk(1/x))′.

Since pk(1/x) is a polynomial in 1/x, (pk(1/x))′ = p′k(1/x))(−1/x2),
which turns out to be another polynomial in 1/x. Therefore,

g(k+1)(x) = e−1/x
2
pk+1(1/x), where pk+1(1/x) = (2/x3)pn(1/x)+

(pk(1/x))′ is a polynomial in 1/x. Because g′(x) = e−1/x
2
(2/x3),

where 2/x3 is a polynomial in 1/x, we know g(n)(x) = e−1/x
2
pn(1/x)

hold for any n.
Then, assume g(k)(0) = 0 for k ≥ 1, then by definition,

g(k+1)(0) = lim
x→0

(g(k)(x)− g(k)(0))/x = lim
x→0

g(k)(x)/x.

From the statement above, we know g(k)(x) = e−1/x
2
pk(1/x)

hence g(k)(x)/x = e−1/x
2
qk(1/x), where qk(1/x) = pk(1/x)/x

is another polynomial in 1/x. Assume the degree of qk(t) is d,
then

lim
x→0

g(k)(x)

x
= lim

x→0

qk(1/x)

e1/x2 = lim
t→∞

yd

ey2
= 0

by implement L’Hospital’s Rule for at most d times. Since
g(0) = 0, we know g(n)(0) = 0 for any n by induction.

(b) The Taylor series T (x) of gn(x) is T (x) = g(0)+
∑∞

k=1 g
(k)
n (0)xk.

By item a., we know T (x) = 0 since it is a sum of zero terms.
However, g(x) 6= 0 if x 6= 0, hence g(x) 6= T (x) when x 6= 0.
When x = 0, both g(x) and T (x) are zeros. Which T (x) agrees
with g(x) if and only if x = 0.

32.3 By definition, L(g) = supP {L(g, P )}. Given a partition P = {a =
t0 < · · · < tn = b}, for any interval [tk, tk+1], g(x) ≥ 0. In particular,
there exists qk ∈ [tk, tk+1] ∩ Q, and hence f(qk) = 0. This implies
that L(g, P ) = 0 and so L(g) = 0.

Consider U(g) := infP {U(g, P )}. Given a partition P = {a = t0 <
· · · < tn = b}, for any interval [tk, tk+1], sup g(x) : x ∈ [tk, tk+1] =
t2k+1. So

U(g, P ) =
n−1∑
k=0

t2k+1(tk+1 − tk).
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Let f(x) = x2 for x ∈ [0, b], then U(f, P ) = U(g, P ) for any given
partition P . So

U(g) = inf
P
{U(g, P )} = inf

P
{U(f, P )} = U(f).

From Calculus, we know U(f) =
∫ b
0 f(x)dx = b3/3 = U(g). Since

U(g) 6= L(g), we know g is not integrable.
32.6 First, we observe that Un ≥ U(f) and Ln ≤ L(f) for any n. There-

fore, U(f) − L(f) ≤ Un − Ln for any n. By Theorem 32.4, U(f) −
L(f) ≥ 0. So,

0 ≤ U(f)− L(f) ≤ lim
n→∞

Un − Ln = 0.

This implies U(f)− L(f) = 0 and f is integrable. Notice that

Un − U(f) = Un − L(f) ≤ Un − Ln,

So
lim
n→∞

Un − U(f) ≤ lim
n→∞

Un − Ln = 0.

Therefore we conclude limn→∞ Un = U(f). Similarly we get Ln →
L(f). Because limn→∞ Un ≥ U(f) = L(f) And hence f is integrable

and
∫ b
a f = U(f) = limn→∞ Un = limn→∞ Ln.


