HW 7

31.5 (a) We imitate the proof shown in Example 3, Chapter 31:

Fisrt we show $g^{(n)}(x)=e^{-1 / x^{2}} p_{n}(1 / x)$ for some polynomial p_{n} by induction. Asssume this is true for $n=k$. Then
$g^{(k+1)}(x)=\left(e^{-1 / x^{2}} p_{k}(1 / x)\right)^{\prime}=e^{-1 / x^{2}}\left(2 / x^{3}\right) p_{k}(1 / x)+e^{-1 / x^{2}}\left(p_{k}(1 / x)\right)^{\prime}$.
Since $p_{k}(1 / x)$ is a polynomial in $\left.1 / x,\left(p_{k}(1 / x)\right)^{\prime}=p_{k}^{\prime}(1 / x)\right)\left(-1 / x^{2}\right)$, which turns out to be another polynomial in $1 / x$. Therefore, $g^{(k+1)}(x)=e^{-1 / x^{2}} p_{k+1}(1 / x)$, where $p_{k+1}(1 / x)=\left(2 / x^{3}\right) p_{n}(1 / x)+$ $\left(p_{k}(1 / x)\right)^{\prime}$ is a polynomial in $1 / x$. Because $g^{\prime}(x)=e^{-1 / x^{2}}\left(2 / x^{3}\right)$, where $2 / x^{3}$ is a polynomial in $1 / x$, we know $g^{(n)}(x)=e^{-1 / x^{2}} p_{n}(1 / x)$ hold for any n.
Then, assume $g^{(k)}(0)=0$ for $k \geq 1$, then by definition,

$$
g^{(k+1)}(0)=\lim _{x \rightarrow 0}\left(g^{(k)}(x)-g^{(k)}(0)\right) / x=\lim _{x \rightarrow 0} g^{(k)}(x) / x .
$$

From the statement above, we know $g^{(k)}(x)=e^{-1 / x^{2}} p_{k}(1 / x)$ hence $g^{(k)}(x) / x=e^{-1 / x^{2}} q_{k}(1 / x)$, where $q_{k}(1 / x)=p_{k}(1 / x) / x$ is another polynomial in $1 / x$. Assume the degree of $q_{k}(t)$ is d, then

$$
\lim _{x \rightarrow 0} \frac{g^{(k)}(x)}{x}=\lim _{x \rightarrow 0} \frac{q_{k}(1 / x)}{e^{1 / x^{2}}}=\lim _{t \rightarrow \infty} \frac{y^{d}}{e^{y^{2}}}=0
$$

by implement L'Hospital's Rule for at most d times. Since $g(0)=0$, we know $g^{(n)}(0)=0$ for any n by induction.
(b) The Taylor series $T(x)$ of $g_{n}(x)$ is $T(x)=g(0)+\sum_{k=1}^{\infty} g_{n}^{(k)}(0) x^{k}$. By item a., we know $T(x)=0$ since it is a sum of zero terms. However, $g(x) \neq 0$ if $x \neq 0$, hence $g(x) \neq T(x)$ when $x \neq 0$. When $x=0$, both $g(x)$ and $T(x)$ are zeros. Which $T(x)$ agrees with $g(x)$ if and only if $x=0$.
32.3 By definition, $L(g)=\sup _{P}\{L(g, P)\}$. Given a partition $P=\{a=$ $\left.t_{0}<\cdots<t_{n}=b\right\}$, for any interval $\left[t_{k}, t_{k+1}\right], g(x) \geq 0$. In particular, there exists $q_{k} \in\left[t_{k}, t_{k+1}\right] \cap \mathbb{Q}$, and hence $f\left(q_{k}\right)=0$. This implies that $L(g, P)=0$ and so $L(g)=0$.

Consider $U(g):=\inf _{P}\{U(g, P)\}$. Given a partition $P=\left\{a=t_{0}<\right.$ $\left.\cdots<t_{n}=b\right\}$, for any interval $\left[t_{k}, t_{k+1}\right]$, $\sup g(x): x \in\left[t_{k}, t_{k+1}\right]=$ t_{k+1}^{2}. So

$$
U(g, P)=\sum_{k=0}^{n-1} t_{k+1}^{2}\left(t_{k+1}-t_{k}\right)
$$

Let $f(x)=x^{2}$ for $x \in[0, b]$, then $U(f, P)=U(g, P)$ for any given partition P. So

$$
U(g)=\inf _{P}\{U(g, P)\}=\inf _{P}\{U(f, P)\}=U(f) .
$$

From Calculus, we know $U(f)=\int_{0}^{b} f(x) d x=b^{3} / 3=U(g)$. Since $U(g) \neq L(g)$, we know g is not integrable.
32.6 First, we observe that $U_{n} \geq U(f)$ and $L_{n} \leq L(f)$ for any n. Therefore, $U(f)-L(f) \leq U_{n}-L_{n}$ for any n. By Theorem 32.4, $U(f)-$ $L(f) \geq 0$. So,

$$
0 \leq U(f)-L(f) \leq \lim _{n \rightarrow \infty} U_{n}-L_{n}=0 .
$$

This implies $U(f)-L(f)=0$ and f is integrable. Notice that

$$
U_{n}-U(f)=U_{n}-L(f) \leq U_{n}-L_{n},
$$

So

$$
\lim _{n \rightarrow \infty} U_{n}-U(f) \leq \lim _{n \rightarrow \infty} U_{n}-L_{n}=0
$$

Therefore we conclude $\lim _{n \rightarrow \infty} U_{n}=U(f)$. Similarly we get $L_{n} \rightarrow$ $L(f)$. Because $\lim _{n \rightarrow \infty} U_{n} \geq U(f)=L(f)$ And hence f is integrable and $\int_{a}^{b} f=U(f)=\lim _{n \rightarrow \infty} U_{n}=\lim _{n \rightarrow \infty} L_{n}$.

