HW 8

- 33.3 (a) Let f be a step function given in the conditions. Since $f(x) = c_i$ for all $x \in (u_{j-1}, u_j)$, it is integrable on this intervel. Additionally, by exercise 32.7, we know f(x) is integrable on $[u_{j-1}, u_j]$. So, by Theorem 33.6, it is integrable on [a, b], and $\int_a^b f(x)dx = \sum_{j=1}^n c_j(t_{j+i} - t_j)$. (b) We know $u_j = j$ for $j = 1, \dots, 4$. And $c_j = A + (j-1)B$ for $j = 1, \dots, 4$.
 - 1,...,4. So by the evaluation in item a, $\int_0^4 P(x)dx = 4A + 6B$.
- 33.8 (a) Since f, g are integrable, we know both f + g and f g are integrable. Therefore, by exercise 33.7, $(f + g)^2$, $(f - g)^2$ are integrable. So, $fg = \frac{1}{4}((f+g)^2 - (f-g)^2)$ is integrable.
 - (b) Since $\min(f, g) = (f + g |f g|)/2$, and |f g| is integrable by Theorem 33.5, we know $\min(f, g)$ is integrable. Similarly, since $\max(f, g) = \min(-f, -g), \max(f, g)$ is also integrable.
- Problem 3 It is clear that L(f) = 0 since L(f, P) = 0 for any partition P. Since $x_n \to 0$, for any $\epsilon > 0$, there exists N such that $x_n \leq \epsilon/2$ for all n > N. So, there are at most N elements of $\{x_n\}$ not in $[0, \epsilon/2]$. Let $P = \{0 = t_0 < t_1 < \cdots < t_n = 1\}$ be a partition such that $t_1 - t_0 = \epsilon/2$ and $t_{i+1} - t_i = \epsilon/4N$.

It is clear that $[t_0, t_1]$ contains most of the sequence elements. We now look at how many partition intervals $[t_{i-1}, t_i]$ with $i \geq 2$ contain an element from the sequence - this is important since this is what decides whether $M(f, [t_{i-1}, t_i])$ is 0 or 1. An element x_n with $n \leq N$ may belong to one partition interval (t_{i-1}, t_i) or to two if $x_n = t_i$ (in this case it belongs to both $[t_{i-1}, t_i]$ and $[t_{i-1}, t_i]$; but it cannot belong to more than two such partition intervals.

Therefore in the set of intervals $[t_{i-1}, t_i]$ with $i \geq 2$ there are at most 2N intervals which contain an element in the sequence and these are the intervals where $M(f, [t_{i-1}, t_i]) = 1$, for the rest we have $M(f, [t_{i-1}, t_i]) = 0.$

Then $U(f, P) \leq \epsilon/2 + 2N[\epsilon/4N] = \epsilon$. From the arbitrariness of ϵ , it follows that $U(f) = \inf U(f, P) \leq 0$.

On the other hand $0 = L(f) \leq U(f) \leq 0$, therefore L(f) =U(f) = 0 which implies that f is integrable and $\int_0^1 f = U(f) =$ L(f) = 0.