HW 8

33.3 (a) Let f be a step function given in the conditions. Since $f(x)=c_{j}$ for all $x \in\left(u_{j-1}, u_{j}\right)$, it is integrable on this intervel. Additionally, by exercise 32.7 , we know $f(x)$ is integrable on $\left[u_{j-1}, u_{j}\right]$. So, by Theorem 33.6, it is integrable on $[a, b]$, and $\int_{a}^{b} f(x) d x=$ $\sum_{j=1}^{n} c_{j}\left(t_{j+i}-t_{j}\right)$.
(b) We know $u_{j}=j$ for $j=1, \ldots, 4$. And $c_{j}=A+(j-1) B$ for $j=$ $1, \ldots, 4$. So by the evaluation in item a, $\int_{0}^{4} P(x) d x=4 A+6 B$.
33.8 (a) Since f, g are integrable, we know both $f+g$ and $f-g$ are integrable. Therefore, by exercise $33.7,(f+g)^{2},(f-g)^{2}$ are integrable. So, $f g=\frac{1}{4}\left((f+g)^{2}-(f-g)^{2}\right)$ is integrable.
(b) Since $\min (f, g)=(f+g-|f-g|) / 2$, and $|f-g|$ is integrable by Theorem 33.5, we know $\min (f, g)$ is integrable. Similarly, since $\max (f, g)=\min (-f,-g), \max (f, g)$ is also integrable.
Problem 3 It is clear that $L(f)=0$ since $L(f, P)=0$ for any partition P. Since $x_{n} \rightarrow 0$, for any $\epsilon>0$, there exists N such that $x_{n} \leq \epsilon / 2$ for all $n>N$. So, there are at most N elements of $\left\{x_{n}\right\}$ not in $[0, \epsilon / 2]$. Let $P=\left\{0=t_{0}<t_{1}<\cdots<t_{n}=1\right\}$ be a partition such that $t_{1}-t_{0}=\epsilon / 2$ and $t_{i+1}-t_{i}=\epsilon / 4 N$.

It is clear that $\left[t_{0}, t_{1}\right]$ contains most of the sequence elements. We now look at how many partition intervals $\left[t_{i-1}, t_{i}\right]$ with $i \geq 2$ contain an element from the sequence - this is important since this is what decides whether $M\left(f,\left[t_{i-1}, t_{i}\right]\right)$ is 0 or 1 . An element x_{n} with $n \leq N$ may belong to one partition interval $\left(t_{i-1}, t_{i}\right)$ or to two if $x_{n}=t_{i}$ (in this case it belongs to both $\left[t_{i-1}, t_{i}\right]$ and $\left[t_{i-1}, t_{i}\right]$); but it cannot belong to more than two such partition intervals.

Therefore in the set of intervals $\left[t_{i-1}, t_{i}\right]$ with $i \geq 2$ there are at most $2 N$ intervals which contain an element in the sequence and these are the intervals where $M\left(f,\left[t_{i-1}, t_{i}\right]\right)=1$, for the rest we have $M\left(f,\left[t_{i-1}, t_{i}\right]\right)=0$.

Then $U(f, P) \leq \epsilon / 2+2 N[\epsilon / 4 N]=\epsilon$. From the arbitrariness of ϵ, it follows that $U(f)=\inf U(f, P) \leq 0$.

On the other hand $0=L(f) \leq U(f) \leq 0$, therefore $L(f)=$ $U(f)=0$ which implies that f is integrable and $\int_{0}^{1} f=U(f)=$ $L(f)=0$.

