
Practice Final

Problem 1. For each n ∈ N and x ∈ (−1, 1) define

pn(x) = x+ x(1− x2) + x(1− x2)2 + ...+ x(1− x2)n.

i) Prove that the sequence pn : (−1, 1) → R converges pointwise on
(−1, 1).

ii) Does pn : (−1, 1)→ R converges uniformly on (−1, 1)?

Solution. i) We have that

pn(x) = x
n∑
k=0

(1− x2)k = x · 1− (1− x2)n+1

1− (1− x2)
=

1

x
(1− (1− x2)n+1), x 6= 0

and pn(0) = 0. If |1 − x2| < 1, then limn→∞(1 − (1 − x2)n+1) = 0, thus
pn converges pointwise to 1

x in this regime; this regimes can be rewritten

as −1 < 1 − x2 < 1 or 0 < x2 < 2 which gives x ∈ (−
√

2,
√

2) \ {0}. On
the other hand, pn(0) = 0, ∀n, thus pn(0) converges to 0. Thus we just
proved that pn converges pointwise to p(x) on (−1, 1) where p(0) = 0 and
p(x) = 1

x , x 6= 0.
ii) The converges cannot be uniform. Indeed if it were, then since all pn

are continuous at 0 (they are after all just polynomials), it would follow that
p is continuous at 0 which is not the case.

Problem 2. Prove that | sinx− sin y| ≤ |x− y|,∀x, y ∈ R.

Solution. Without restricting the generality of the argument let us assume
that x < y; if x = y both terms are 0. By the MVT, we have that there
exists c ∈ (x, y) such that sinx− sin y = sin′ c · (x−y) = cos c · (x−y). Using
the simple fact that | cos c| ≤ 1, it follows that | sinx− sin y| ≤ |x− y|.

Problem 3. Let f : R → R and assume that there exists M > 0 such
that |f(x) − f(y)| ≤ M |x − y|3 for all x, y ∈ R. Prove that f is a constant
function.

Solution. This is very similar to 29.5 in the textbook whose solution was
provided in HW 5.

Problem 4. i) Prove the following identity:

1

1 + x
=

∞∑
k=0

(−1)kxk, |x| < 1.

In other words, prove that 1
1+x equals its Taylor series at x0 = 0 on (−1, 1).

ii) Derive the Taylor formula for 1
1+x2

and explain why it equals 1
1+x2

for

x ∈ (−1, 1).
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iii) Explain why the Taylor series for 1
1+x2

converges uniformly to 1
1+x2

on [0, 1√
3
].

iv) Integrate 1
1+x2

and its Taylor series on [0, 1√
3
], and obtain a formula

for π as a series.
Solution. i) Start with the formula:

1 + r + ..+ rn =
1− rn+1

1− r
Plug in r = −x to obtain

sn(x) = 1− x+ ...+ (−1)nxn =
1− (−1)n+1xn+1

1 + x
.

Since for |x| < 1 we have

lim
n→∞

sn(x) = lim
n→∞

1− (−1)n+1xn+1

1 + x
=

1

1 + x
,

and the result follows.
ii) Replace x by x2 in i)

1

1 + x2
=

∞∑
k=0

(−1)kx2k.

Note that |x2| < 1 is equivalent to |x| < 1, thus equality holds true for any
x ∈ (−1, 1). Given that we have equality, the theory tells us that if

f(x) =

∞∑
k=0

(−1)kx2k,

then f (2k)(0) = (−1)k(2k)! and f (2k+1)(0) = 0, thus the series is precisely
the Taylor series for f(x) = 1

1+x2
.

iii) The interval [0, 1√
3
] ⊂ [− 1√

3
, 1√

3
] and 1√

3
< 1, thus by a theorem in

the book the power series is uniformly convergent there.
iv) Since the convergence is uniform, we can integrate term by term:∫ 1√

3

0

1

1 + x2
dx =

∞∑
k=0

∫ 1√
3

0
(−1)kx2kdx.

This gives ∫ 1√
3

0
(arctanx)′dx =

∞∑
k=0

∫ 1√
3

0
(−1)k(

x2k+1

2k + 1
)′dx,

and performing the integrals:

π

6
=
∞∑
k=0

(−1)k
√

3
−2k−1

2k + 1
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or, in a more elegant way,

π

6
=
∞∑
k=0

(−1)k
3
−2k−1

2

2k + 1
.

Problem 5. Assume that fn : [a, b] → R is a sequence of integrable
functions which converges uniformly to f : [a, b] → R. Prove that f is
integrable on [a, b] and that

lim
n→∞

∫ b

a
fn =

∫ b

a
f.

Solution. We do a warm up exercise first. Assume that g, h : [c, d] → R
are such that |g(x) − h(x)| ≤ β. Then |M(g : [c, d]) −M(h : [c, d])| ≤ β
where we recall that M(g : [c, d]) = sup{g(x) : x ∈ [c, d]}.

Indeed, we have that g(x)− h(x) ≤ ε, ∀x ∈ [c.d], thus g(x) ≤ h(x) + β ≤
M(h : [c, d]) + β,∀x ∈ [c, d]. This makes M(h : [c, d]) + β an upper bound
for g on [c, d], thus M(g : [c, d]) ≤M(h : [c, d]) + β. In a similar manner we
obtain M(h : [c, d]) ≤ M(g : [c, d]) + β and from these two inequalities we
obtain our claim |M(g : [c, d])−M(h : [c, d])| ≤ β.

In a similar manner we also obtain |m(g : [c, d])−m(h : [c, d])| ≤ β.
Now we continue with our problem. Given ε > 0, there exists N such

that |fn(x) − f(x)| ≤ ε
3(b−a) for all n ≥ N and x ∈ [a, b]. Below we work

with any choice of n ≥ N . fn is integrable, thus there exists a partition
P = {a = t0 < t1 < ... < tn = b} of [a, b] such that

U(fn, P )− L(fn, P ) ≤ ε

3
.

Using the exercise above, it follows that

|U(f, P )− U(fn, P )| = |
n∑
k=1

(M(f : [tk−1, tk])−M(fn : [tk−1, tk]))(tk − tk−1)|

≤
n∑
k=1

|(M(f : [tk−1, tk])−M(fn : [tk−1, tk])|(tk − tk−1)

≤
n∑
k=1

ε

3(b− a)
(tk − tk−1)

=
ε

3(b− a)
· (b− a) =

ε

3
.

A similar argument shows that |L(f, P )− L(fn, P )| ≤ ε
3 .
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Now we wrap things up:

|U(f, P )− L(f, P )| = |U(fn, P )− L(fn, P ) + U(f, P )− U(fn, P )− (L(f, P )− L(fn, P ))|
≤ |U(fn, P )− L(fn, P )|+ |U(f, P )− U(fn, P )|+ |(L(f, P )− L(fn, P ))|

≤ ε

3
+
ε

3
+
ε

3
= ε.

This proves that f is integrable on [a, b].
The above argument also shows that

|
∫
fn −

∫
f | = |

∫
fn − U(fn, P ) + U(fn, P )− U(f, P ) + U(f, P )−

∫
f |

≤ ε

3
+

ε

3(b− a)
+ ε = ε(

4

3
+

1

3(b− a)
).

But this holds true for any n ≥ N , therefore we have shown that for any
ε > 0, there exists N such that the above holds true. This proves that

lim
n→∞

∫ b

a
fn =

∫ b

a
f.

Problem 6. i) A number x ∈ R is called a dyadic rational if it can be
written in the form x = k

2n for some k ∈ Z, n ∈ N. Prove that the set of

dyadic rational A = { k2n : k ∈ Z, n ∈ N} is dense in R.
ii) Is the function f : [0, 1]→ R

f(x) =

{
1, if x is a dyadic rational

0, otherwise.

integrable? Justify your reasoning!
iii) Consider the sequence of functions fn : [0, 1]→ R defined by

fn(x) =

{
1, if x = k

2n for some k ∈ N
0, otherwise.

Prove that {fn} converges pointwise to f , the function from ii).
iv) Does {fn} converge uniformly to f? Justify your answer!

Solution. i) Given a < b there exists n ∈ N such that 1
2n < b − a;

thus 2nb > 2na + 1 and this shows that there exists an integer k such that
2na < k < 2nb. From this it follows that k

2n ∈ (a, b), therefore A is dense in
R.

ii) Let P = {0 = t0 < t1 < ... < tn = 1} be a partition of [0, 1]. In any
[tk−1, tk] there is a dyadic rational and an irrational number which cannot
be a dyadic rational; therefore m(f : [tk−1, tk]) = 0 and M(f : [tk−1, tk]) = 1
and this gives

L(f, P ) =
n∑
k=1

0 · (tk − tk−1) = 0, L(f, P ) =
n∑
k=1

1 · (tk − tk−1) = 1.
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Since this holds true for any partition P , it follows that L(f) = 0 and
U(f) = 1, hence f is not integrable.

iii) If x is not a dyadic rational, then fn(x) = 0, ∀n ∈ N, thus limn→∞ fn(x) =
0 = f(x).

If x is a dyadic rational, then x = k
2N

for some k,N ∈ N. Then fn(x) =
1,∀n ≥ N thus limn→∞ = 1 = f(x).

iv) fn differs from the constant function g(x) = 0, ∀x ∈ [0, 1] at finitely
many points, therefore each fn is integrable. However f is not integrable,
thus the convergence cannot be uniform by Problem 5.


