Practice Final

Problem 1. For each $n \in \mathbb{N}$ and $x \in(-1,1)$ define

$$
p_{n}(x)=x+x\left(1-x^{2}\right)+x\left(1-x^{2}\right)^{2}+\ldots+x\left(1-x^{2}\right)^{n} .
$$

i) Prove that the sequence $p_{n}:(-1,1) \rightarrow \mathbb{R}$ converges pointwise on $(-1,1)$.
ii) Does $p_{n}:(-1,1) \rightarrow \mathbb{R}$ converges uniformly on $(-1,1)$?

Solution. i) We have that
$p_{n}(x)=x \sum_{k=0}^{n}\left(1-x^{2}\right)^{k}=x \cdot \frac{1-\left(1-x^{2}\right)^{n+1}}{1-\left(1-x^{2}\right)}=\frac{1}{x}\left(1-\left(1-x^{2}\right)^{n+1}\right), \quad x \neq 0$
and $p_{n}(0)=0$. If $\left|1-x^{2}\right|<1$, then $\lim _{n \rightarrow \infty}\left(1-\left(1-x^{2}\right)^{n+1}\right)=0$, thus p_{n} converges pointwise to $\frac{1}{x}$ in this regime; this regimes can be rewritten as $-1<1-x^{2}<1$ or $0<x^{2}<2$ which gives $x \in(-\sqrt{2}, \sqrt{2}) \backslash\{0\}$. On the other hand, $p_{n}(0)=0, \forall n$, thus $p_{n}(0)$ converges to 0 . Thus we just proved that p_{n} converges pointwise to $p(x)$ on $(-1,1)$ where $p(0)=0$ and $p(x)=\frac{1}{x}, x \neq 0$.
ii) The converges cannot be uniform. Indeed if it were, then since all p_{n} are continuous at 0 (they are after all just polynomials), it would follow that p is continuous at 0 which is not the case.

Problem 2. Prove that $|\sin x-\sin y| \leq|x-y|, \forall x, y \in \mathbb{R}$.
Solution. Without restricting the generality of the argument let us assume that $x<y$; if $x=y$ both terms are 0 . By the MVT, we have that there exists $c \in(x, y)$ such that $\sin x-\sin y=\sin ^{\prime} c \cdot(x-y)=\cos c \cdot(x-y)$. Using the simple fact that $|\cos c| \leq 1$, it follows that $|\sin x-\sin y| \leq|x-y|$.

Problem 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and assume that there exists $M>0$ such that $|f(x)-f(y)| \leq M|x-y|^{3}$ for all $x, y \in \mathbb{R}$. Prove that f is a constant function.

Solution. This is very similar to 29.5 in the textbook whose solution was provided in HW 5.

Problem 4. i) Prove the following identity:

$$
\frac{1}{1+x}=\sum_{k=0}^{\infty}(-1)^{k} x^{k}, \quad|x|<1 .
$$

In other words, prove that $\frac{1}{1+x}$ equals its Taylor series at $x_{0}=0$ on $(-1,1)$.
ii) Derive the Taylor formula for $\frac{1}{1+x^{2}}$ and explain why it equals $\frac{1}{1+x^{2}}$ for $x \in(-1,1)$.
iii) Explain why the Taylor series for $\frac{1}{1+x^{2}}$ converges uniformly to $\frac{1}{1+x^{2}}$ on $\left[0, \frac{1}{\sqrt{3}}\right]$.
iv) Integrate $\frac{1}{1+x^{2}}$ and its Taylor series on $\left[0, \frac{1}{\sqrt{3}}\right]$, and obtain a formula for π as a series.

Solution. i) Start with the formula:

$$
1+r+. .+r^{n}=\frac{1-r^{n+1}}{1-r}
$$

Plug in $r=-x$ to obtain

$$
s_{n}(x)=1-x+\ldots+(-1)^{n} x^{n}=\frac{1-(-1)^{n+1} x^{n+1}}{1+x}
$$

Since for $|x|<1$ we have

$$
\lim _{n \rightarrow \infty} s_{n}(x)=\lim _{n \rightarrow \infty} \frac{1-(-1)^{n+1} x^{n+1}}{1+x}=\frac{1}{1+x}
$$

and the result follows.
ii) Replace x by x^{2} in i)

$$
\frac{1}{1+x^{2}}=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k}
$$

Note that $\left|x^{2}\right|<1$ is equivalent to $|x|<1$, thus equality holds true for any $x \in(-1,1)$. Given that we have equality, the theory tells us that if

$$
f(x)=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k}
$$

then $f^{(2 k)}(0)=(-1)^{k}(2 k)$! and $f^{(2 k+1)}(0)=0$, thus the series is precisely the Taylor series for $f(x)=\frac{1}{1+x^{2}}$.
iii) The interval $\left[0, \frac{1}{\sqrt{3}}\right] \subset\left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$ and $\frac{1}{\sqrt{3}}<1$, thus by a theorem in the book the power series is uniformly convergent there.
iv) Since the convergence is uniform, we can integrate term by term:

$$
\int_{0}^{\frac{1}{\sqrt{3}}} \frac{1}{1+x^{2}} d x=\sum_{k=0}^{\infty} \int_{0}^{\frac{1}{\sqrt{3}}}(-1)^{k} x^{2 k} d x
$$

This gives

$$
\int_{0}^{\frac{1}{\sqrt{3}}}(\arctan x)^{\prime} d x=\sum_{k=0}^{\infty} \int_{0}^{\frac{1}{\sqrt{3}}}(-1)^{k}\left(\frac{x^{2 k+1}}{2 k+1}\right)^{\prime} d x
$$

and performing the integrals:

$$
\frac{\pi}{6}=\sum_{k=0}^{\infty}(-1)^{k} \frac{\sqrt{3}^{-2 k-1}}{2 k+1}
$$

or, in a more elegant way,

$$
\frac{\pi}{6}=\sum_{k=0}^{\infty}(-1)^{k} \frac{3^{\frac{-2 k-1}{2}}}{2 k+1}
$$

Problem 5. Assume that $f_{n}:[a, b] \rightarrow \mathbb{R}$ is a sequence of integrable functions which converges uniformly to $f:[a, b] \rightarrow \mathbb{R}$. Prove that f is integrable on $[a, b]$ and that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}=\int_{a}^{b} f
$$

Solution. We do a warm up exercise first. Assume that $g, h:[c, d] \rightarrow \mathbb{R}$ are such that $|g(x)-h(x)| \leq \beta$. Then $|M(g:[c, d])-M(h:[c, d])| \leq \beta$ where we recall that $M(g:[c, d])=\sup \{g(x): x \in[c, d]\}$.

Indeed, we have that $g(x)-h(x) \leq \epsilon, \forall x \in[c . d]$, thus $g(x) \leq h(x)+\beta \leq$ $M(h:[c, d])+\beta, \forall x \in[c, d]$. This makes $M(h:[c, d])+\beta$ an upper bound for g on $[c, d]$, thus $M(g:[c, d]) \leq M(h:[c, d])+\beta$. In a similar manner we obtain $M(h:[c, d]) \leq M(g:[c, d])+\beta$ and from these two inequalities we obtain our claim $|M(g:[c, d])-M(h:[c, d])| \leq \beta$.

In a similar manner we also obtain $|m(g:[c, d])-m(h:[c, d])| \leq \beta$.
Now we continue with our problem. Given $\epsilon>0$, there exists N such that $\left|f_{n}(x)-f(x)\right| \leq \frac{\epsilon}{3(b-a)}$ for all $n \geq N$ and $x \in[a, b]$. Below we work with any choice of $n \geq N . f_{n}$ is integrable, thus there exists a partition $P=\left\{a=t_{0}<t_{1}<\ldots<t_{n}=b\right\}$ of $[a, b]$ such that

$$
U\left(f_{n}, P\right)-L\left(f_{n}, P\right) \leq \frac{\epsilon}{3} .
$$

Using the exercise above, it follows that

$$
\begin{aligned}
\left|U(f, P)-U\left(f_{n}, P\right)\right| & =\left|\sum_{k=1}^{n}\left(M\left(f:\left[t_{k-1}, t_{k}\right]\right)-M\left(f_{n}:\left[t_{k-1}, t_{k}\right]\right)\right)\left(t_{k}-t_{k-1}\right)\right| \\
& \leq \sum_{k=1}^{n} \mid\left(M\left(f:\left[t_{k-1}, t_{k}\right]\right)-M\left(f_{n}:\left[t_{k-1}, t_{k}\right]\right) \mid\left(t_{k}-t_{k-1}\right)\right. \\
& \leq \sum_{k=1}^{n} \frac{\epsilon}{3(b-a)}\left(t_{k}-t_{k-1}\right) \\
& =\frac{\epsilon}{3(b-a)} \cdot(b-a)=\frac{\epsilon}{3} .
\end{aligned}
$$

A similar argument shows that $\left|L(f, P)-L\left(f_{n}, P\right)\right| \leq \frac{\epsilon}{3}$.

Now we wrap things up:

$$
\begin{aligned}
|U(f, P)-L(f, P)| & =\left|U\left(f_{n}, P\right)-L\left(f_{n}, P\right)+U(f, P)-U\left(f_{n}, P\right)-\left(L(f, P)-L\left(f_{n}, P\right)\right)\right| \\
& \leq\left|U\left(f_{n}, P\right)-L\left(f_{n}, P\right)\right|+\left|U(f, P)-U\left(f_{n}, P\right)\right|+\left|\left(L(f, P)-L\left(f_{n}, P\right)\right)\right| \\
& \leq \frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon .
\end{aligned}
$$

This proves that f is integrable on $[a, b]$.
The above argument also shows that

$$
\begin{aligned}
\left|\int f_{n}-\int f\right| & =\left|\int f_{n}-U\left(f_{n}, P\right)+U\left(f_{n}, P\right)-U(f, P)+U(f, P)-\int f\right| \\
& \leq \frac{\epsilon}{3}+\frac{\epsilon}{3(b-a)}+\epsilon=\epsilon\left(\frac{4}{3}+\frac{1}{3(b-a)}\right) .
\end{aligned}
$$

But this holds true for any $n \geq N$, therefore we have shown that for any $\epsilon>0$, there exists N such that the above holds true. This proves that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}=\int_{a}^{b} f
$$

Problem 6. i) A number $x \in \mathbb{R}$ is called a dyadic rational if it can be written in the form $x=\frac{k}{2^{n}}$ for some $k \in \mathbb{Z}, n \in \mathbb{N}$. Prove that the set of dyadic rational $A=\left\{\frac{k}{2^{n}}: k \in \mathbb{Z}, n \in \mathbb{N}\right\}$ is dense in \mathbb{R}.
ii) Is the function $f:[0,1] \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}1, & \text { if } x \text { is a dyadic rational } \\ 0, & \text { otherwise }\end{cases}
$$

integrable? Justify your reasoning!
iii) Consider the sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f_{n}(x)= \begin{cases}1, & \text { if } x=\frac{k}{2^{n}} \text { for some } k \in \mathbb{N} \\ 0, & \text { otherwise }\end{cases}
$$

Prove that $\left\{f_{n}\right\}$ converges pointwise to f, the function from ii).
iv) Does $\left\{f_{n}\right\}$ converge uniformly to f ? Justify your answer!

Solution. i) Given $a<b$ there exists $n \in \mathbb{N}$ such that $\frac{1}{2^{n}}<b-a$; thus $2^{n} b>2^{n} a+1$ and this shows that there exists an integer k such that $2^{n} a<k<2^{n} b$. From this it follows that $\frac{k}{2^{n}} \in(a, b)$, therefore A is dense in \mathbb{R}.
ii) Let $P=\left\{0=t_{0}<t_{1}<\ldots<t_{n}=1\right\}$ be a partition of [0, 1]. In any $\left[t_{k-1}, t_{k}\right]$ there is a dyadic rational and an irrational number which cannot be a dyadic rational; therefore $m\left(f:\left[t_{k-1}, t_{k}\right]\right)=0$ and $M\left(f:\left[t_{k-1}, t_{k}\right]\right)=1$ and this gives

$$
L(f, P)=\sum_{k=1}^{n} 0 \cdot\left(t_{k}-t_{k-1}\right)=0, \quad L(f, P)=\sum_{k=1}^{n} 1 \cdot\left(t_{k}-t_{k-1}\right)=1 .
$$

Since this holds true for any partition P, it follows that $L(f)=0$ and $U(f)=1$, hence f is not integrable.
iii) If x is not a dyadic rational, then $f_{n}(x)=0, \forall n \in \mathbb{N}$, thus $\lim _{n \rightarrow \infty} f_{n}(x)=$ $0=f(x)$.

If x is a dyadic rational, then $x=\frac{k}{2^{N}}$ for some $k, N \in \mathbb{N}$. Then $f_{n}(x)=$ $1, \forall n \geq N$ thus $\lim _{n \rightarrow \infty}=1=f(x)$.
iv) f_{n} differs from the constant function $g(x)=0, \forall x \in[0,1]$ at finitely many points, therefore each f_{n} is integrable. However f is not integrable, thus the convergence cannot be uniform by Problem 5 .

