Practice Final

Problem 1. For each $n \in \mathbb{N}$ and $x \in(-1,1)$ define

$$
p_{n}(x)=x+x\left(1-x^{2}\right)+x\left(1-x^{2}\right)^{2}+\ldots+x\left(1-x^{2}\right)^{n} .
$$

a) Prove that the sequence $p_{n}:(-1,1) \rightarrow \mathbb{R}$ converges pointwise on $(-1,1)$.
b) Does $p_{n}:(-1,1) \rightarrow \mathbb{R}$ converges uniformly on $(-1,1)$?

Problem 2. Prove that $|\sin x-\sin y| \leq|x-y|, \forall x, y \in \mathbb{R}$.
Problem 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and assume that there exists $M>0$ such that $|f(x)-f(y)| \leq M|x-y|^{3}$ for all $x, y \in \mathbb{R}$. Prove that f is a constant function.

Problem 4. i) Prove the following identity:

$$
\frac{1}{1+x}=\sum_{k=0}^{\infty}(-1)^{k} x^{k}, \quad|x|<1 .
$$

In other words, prove that $\frac{1}{1+x}$ equals its Taylor series at $x_{0}=0$ on $(-1,1)$.
ii) Derive the Taylor formula for $\frac{1}{1+x^{2}}$ and explain why it equals $\frac{1}{1+x^{2}}$ for $x \in(-1,1)$.
iii) Explain why the Taylor series for $\frac{1}{1+x^{2}}$ converges uniformly to $\frac{1}{1+x^{2}}$ on $\left[0, \frac{1}{\sqrt{3}}\right]$.
iv) Integrate $\frac{1}{1+x^{2}}$ and its Taylor series on $\left[0, \frac{1}{\sqrt{3}}\right]$, and obtain a formula for π as a series.

Problem 5. Assume that $f_{n}:[a, b] \rightarrow \mathbb{R}$ is a sequence of integrable functions which converges uniformly to $f:[a, b] \rightarrow \mathbb{R}$. Prove that f is integrable on $[a, b]$ and that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}=\int_{a}^{b} f
$$

Problem 6. i) A number $x \in \mathbb{R}$ is called a dyadic rational if it can be written in the form $x=\frac{k}{2^{n}}$ for some $k \in \mathbb{Z}, n \in \mathbb{N}$. Prove that the set of dyadic rational $A=\left\{\frac{k}{2^{n}}: k \in \mathbb{Z}, n \in \mathbb{N}\right\}$ is dense in \mathbb{R}.
ii) Is the function $f:[0,1] \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}1, & \text { if } x \text { is a dyadic rational } \\ 0, & \text { otherwise }\end{cases}
$$

integrable? Justify your reasoning!
iii) Consider the sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f_{n}(x)= \begin{cases}1, & \text { if } x=\frac{k}{2^{n}} \text { for some } k \in \mathbb{N} \\ 0, & \text { otherwise }\end{cases}
$$

Prove that $\left\{f_{n}\right\}$ converges pointwise to f, the function from ii). iv) Does $\left\{f_{n}\right\}$ converge uniformly to f ? Justify your answer!

