Quiz 1 - Math 142A

Problem 1. Find the radius of convergence and determine the exact interval of convergence for:
a) $\sum_{n=1}^{\infty} \frac{3^{n}}{n^{3}} x^{n}$.
b) $\sum_{n=1}^{\infty} x^{n^{2}}$.
a) Ratio test:

$$
\lim \frac{\frac{3^{n+1}}{(n+1)^{3}}}{\frac{3^{n}}{n^{3}}}=3 \lim \frac{n^{3}}{(n+1)^{3}}=3
$$

or root test

$$
\lim \left(\frac{3^{n}}{n^{3}}\right)^{\frac{1}{n}}=3 \lim \frac{1}{\left(n^{\frac{1}{n}}\right)^{3}}=3
$$

This leads to $\beta=3$ hence $R=\frac{1}{3}$.
The series converges for $|x|<\frac{1}{3}$ and diverges for $|x|>\frac{1}{3}$.
Now, for $x=\frac{1}{3}$, the series becomes

$$
\sum \frac{1}{n^{3}}
$$

thus it converges since $3>1$ (p-test).
for $x=-\frac{1}{3}$, the series becomes

$$
\sum(-1)^{n} \frac{1}{n^{3}}
$$

thus it converges, because it is absolutely convergent by the above argument.

Final answer: the interval of convergence is $\left[-\frac{1}{3}, \frac{1}{3}\right]$.
b) This is a power series with $a_{k}=1$ if $k=n^{2}$ for some n (that is k is a perfect square) and $a_{k}=0$ otherwise.

The same holds true for $\left|a_{k}\right|^{\frac{1}{k}}$, that is $\left|a_{k}\right|^{\frac{1}{k}}=1$ if $k=n^{2}$ for some n (that is k is a perfect square) and $\left|a_{k}\right|^{\frac{1}{k}}=0$ otherwise. As a consequence $b_{N}=\sup \left\{\left|a_{n}\right|^{\frac{1}{n}}, n>N\right\}=1, \forall N$. From this $\limsup \left|a_{n}\right|^{\frac{1}{n}}=$ $\lim \left|a_{N}\right|^{\frac{1}{N}}=1$. Thus $\beta=1$, hence $R=1$.

For $x=1$ note that this is $\sum 1$ and the sequence upon which we sum does not converge to 0 ; therefore the series diverges.

For $x=-1$ note that this is $\sum(-1)^{n^{2}}$ and the sequence upon which we sum does not converge to 0 ; therefore the series diverges.

Conclusion: the exact interval where the series converges is $(-1,1)$.
Problem 2. Assume $f_{n}: S \subset \mathbb{R} \rightarrow \mathbb{R}$ and $f: S \rightarrow \mathbb{R}$.
i) Write the definition for: $\left(f_{n}\right)$ converges uniformly to f on S.

For every $\epsilon>0$, there exists N such that for $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $n>N$ and all $x \in S$.
ii) Assume $\left(f_{n}\right)$ is a sequence of bounded functions that converges uniformly to f on S. Prove that f is bounded on S.

Let $\epsilon=1$; there exists N such that for $\left|f_{n}(x)-f(x)\right|<1$ for all $n>N$ and $x \in S$.

Fix $n=N+1$. Since f_{n} is bounded, there exists M such that $\left|f_{n}(x)\right| \leq M, \forall x \in S$. Then we have
$|f(x)|=\left|f(x)-f_{n}(x)+f_{n}(x)\right| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)\right| \leq 1+M, \forall x \in S$ which implies that f is bounded on S.

