Quiz 2-Math 142B

Problem 1. i) Show that if the series $\sum f_{n}$ converges uniformly on the set S, then

$$
\lim _{n \rightarrow \infty} \sup \left\{\left|f_{n}(x)\right|: x \in S\right\}=0
$$

ii) Prove that

$$
\sum_{n=1}^{\infty} 3^{n} x^{n}
$$

is a continuous and differentiable function on $\left(-\frac{1}{3}, \frac{1}{3}\right)$, but the convergence of the series is not uniform on $\left(-\frac{1}{3}, \frac{1}{3}\right)$.
iii) Prove that the series

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{n^{3}} x^{n}
$$

converges uniformly on $\left[-\frac{1}{3}, \frac{1}{3}\right]$ to a continuous function.
Solution. i) If $\sum f_{n}$ converges uniformly on S, then $\sigma_{n}=\sum_{k=1}^{n} f_{n}$ converges uniformly on S, thus it is uniformly Cauchy on S. In particular for any $\epsilon>0$, there exists N such that for any $m \geq n>N$ we have that

$$
\left|\sigma_{m}(x)-\sigma_{n}(x)\right|<\epsilon, \forall x \in S
$$

We let $m=n+1$, and obtain $\left|f_{n+1}(x)\right|<\epsilon, \forall n>N, \forall x \in S$. Since the inequality holds for all $x \in S$, if follows that $\sup \left\{\left|f_{n+1}(x)\right|: x \in S\right\} \leq$ $\epsilon, \forall n>N$ from which it follows that $\sup \left\{\left|f_{n}(x)\right|: x \in S\right\} \leq \epsilon, \forall n>$ $N+1$.

This implies the conclusion.
ii) Since $a_{n}=3^{n}$ we have $a_{n}^{\frac{1}{n}}=3$, thus $\beta=\limsup a_{n}^{\frac{1}{n}}=3$ and $R=\frac{1}{3}$. Therefore, by the theory covered, we know that f is continuous and differentiable on $\left(-\frac{1}{3}, \frac{1}{3}\right)$. On the other hand, with $f_{n}(x)=3^{n} x^{n}$,

$$
\sup \left\{\left|f_{n}(x)\right|: x \in\left(-\frac{1}{3}, \frac{1}{3}\right)\right\}=3^{n} \cdot\left(\frac{1}{3}\right)^{n}=1
$$

thus $\lim _{n \rightarrow \infty} \sup \left\{\left|f_{n}(x)\right|: x \in S\right\}=1 \neq 0$ and by i) the convergence cannot be uniform on $\left(-\frac{1}{3}, \frac{1}{3}\right)$.
iii) With $f_{n}(x)=\frac{3^{n}}{n^{3}} x^{n}$, we see immediately that

$$
\left|\frac{3^{n}}{n^{3}} x^{n}\right| \leq \frac{1}{n^{3}}, \quad \forall x \in\left[-\frac{1}{3}, \frac{1}{3}\right]
$$

and the series $\sum \frac{1}{n^{3}}$ is convergent by the p-test. Thus by the Weierstrass M-test, we obtain that the series converges uniformly on $\left[-\frac{1}{3}, \frac{1}{3}\right]$ and since each f_{n} is continuous, it follows that the series is continuous.

Problem 2. a) Consider the function $f(x)=x, x \in Q$ and $f(x)=$ $0, x \in \mathbb{R} \backslash \mathbb{Q}$. Prove that f is not differentiable at any point $a \in \mathbb{R}$.
b) Consider the function $f(x)=x^{3}, x \in Q$ and $f(x)=0, x \in \mathbb{R} \backslash \mathbb{Q}$. Prove that f is differentiable at 0 but not differentiable at any point $a \neq 0$.

Solution. a) If $a \neq 0$, then there exists $\left(x_{n}\right)$ a sequence in Q and $\left(y_{n}\right)$ a sequence in $\mathbb{R} \backslash \mathbb{Q}$ with the property that $\lim x_{n}=\lim y_{n}=a$ (here we use that both Q and $\mathbb{R} \backslash \mathbb{Q}$ are dense in \mathbb{R}). Now we have

$$
\lim f\left(x_{n}\right)=\lim x_{n}=a, \quad \lim f\left(y_{n}\right)=\lim 0=0,
$$

but $a \neq 0$, thus f is not continuous at a, hence it cannot be differentiable at a.

It can easily be shown that f is continuous at 0 ; however if $\left(x_{n}\right)$ a sequence in Q and $\left(y_{n}\right)$ a sequence in $\mathbb{R} \backslash \mathbb{Q}$ with the property that $\lim x_{n}=\lim y_{n}=0$, then when we inspect the limit

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x}
$$

by plugging in $\left(x_{n}\right)$ and $\left(y_{n}\right)$ we see that

$$
\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)}{x_{n}}=1, \lim _{n \rightarrow \infty} \frac{f\left(y_{n}\right)}{y_{n}}=0 .
$$

Thus $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ does not exists, hence f is not differentiable at 0 .
b) The fact that f is not continuous at $a \neq 0$ is similar to the above argument; choosing the same type of sequences converging to a, we see that

$$
\lim f\left(x_{n}\right)=\lim x_{n}^{3}=a^{3}, \quad \lim f\left(y_{n}\right)=\lim 0=0,
$$

and obtain that f is not continuous at a, hence it is not differentiable at a.

Next we show that $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x}$ exists. The following inequality holds true:

$$
|f(x)| \leq|x|^{3}
$$

whether x is rational or irrational, thus $0 \leq\left|\frac{f(x)}{x}\right| \leq x^{2}$. Since $\lim _{x \rightarrow 0} x^{2}=$ 0 , it follows that $\lim _{x \rightarrow 0}\left|\frac{f(x)}{x}\right|=0$, thus $f^{\prime}(0)=0$.

