Quiz 3-Math 142B

Problem 1. Prove that the polynomial $P(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, with $n \geq 1$ and $a_{n} \neq 0$, has at most n distinct roots.

Solution. We prove this by induction with respect to n.
$\mathrm{n}=1$: In this case $P(x)=a_{0}+a_{1} x$ has exactly one solution $x=-\frac{a_{0}}{a_{1}}$.
We assume that we know the result for any polynomial of degree n. Let $P(x)=a_{0}+a_{1} x+\ldots+a_{n+1} x^{n+1}$. Assume by contradiction that P has at least $n+2$ distinct roots; that implies that there exists $x_{1}<x_{2}<\ldots<x_{n+2}$ which are all roots of P.

Now for every $1 \leq k \leq n+1$, since $P\left(x_{k}\right)=P\left(x_{k}+1\right)=0$, by Rolle's theorem it follows that there exists y_{k} with $x_{k}<y_{k}<x_{k+1}$ such that $P^{\prime}\left(y_{k}\right)=0$.

But this produces a polynomial P^{\prime} of degree n with $n+1$ distinct roots, $y_{1}<y_{2}<. .<y_{n+1}$, which is a contradiction. Thus a polynomial of degree $n+1$ has at most $n+1$ distinct roots.

Problem 2. i) Let $f:(a, b) \rightarrow \mathbb{R}$ with $c \in(a, b)$. Write down the formula for the Taylor series of f at c and the definition of the reminder $R_{n}(x)$.
ii) Prove that if there exists M such that $\left|f^{(n)}(x)\right| \leq M$ for all $n \in \mathbb{N}$ and $x \in(a, b)$ then

$$
\lim _{n \rightarrow \infty} R_{n}(x)=0, \quad \forall x \in(a, b)
$$

Hint: You can use the reminder formula:

$$
R_{n}(x)=\frac{f^{(n)}(y)}{n!}(x-c)^{n}, \quad y \text { between } x \text { and } c .
$$

iii) Write down the Taylor series of e^{x} at $c=0$ and prove it equals e^{x} for any $x \in \mathbb{R}$.

Solution. i) Taylor series centered at c :

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
$$

and the reminder

$$
R_{n}(x)=f(x)-\sum_{\substack{k=0 \\ 1}}^{n-1} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
$$

ii) We have

$$
\left|R_{n}(x)\right|=\left|\frac{f^{(n)}(y)}{n!}(x-c)^{n}\right| \leq \frac{M}{n!}|x-c|^{n} .
$$

Next we use that

$$
\lim \frac{\frac{M}{(n+1)!}|x-c|^{n+1}}{\frac{M}{n!}|x-c|^{n}}=\frac{|x-c|}{n+1}=0
$$

and conclude that $\lim \frac{M}{n!}|x-c|^{n}=0$ thus $\lim R_{n}(x)=0$.
iii) Since $\left(e^{x}\right)^{\prime}=e^{x}$ we have that $\left(e^{x}\right)^{(n)}=e^{x}$ for all n and the Taylor series at $c=0$ is

$$
\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}
$$

Next we fix some $M>0$ an notice that for any $x \in[-M, M]$ we have $\left|e^{x}\right| \leq e^{M}$; thus for all n and $x \in[-M, M]$ we have $\left|\left(e^{x}\right)^{(n)}\right| \leq e^{M}$. By ii) it follows that e^{x} equals its Taylor series for all $x \in[-M, M]$.

Since M was arbitrary, and the fact that we can place any x in some $[-M, M]$ the conclusion follows.

