Quiz 4 - Math 142B

Problem 1. Let $f:[0,1] \rightarrow \mathbb{R}$ defined by $f(x)=0$ for $x=q$ for some $q \in \mathbb{Q}, f(x)=1$ for $x=\sqrt{2} \cdot q$ for some $q \in \mathbb{Q}$, and $f(x)=2$ otherwise. Is f is integrable on $[0,1]$? Fully justify your answer. Here \mathbb{Q} is the set of rationals.

Solution. Let $P=\left\{a=t_{0}<t_{1}<. .<t_{n}=b\right\}$ be a partition of $[0,1]$. Since Q is dense in \mathbb{R} and $\mathbb{R} \backslash(\mathbb{Q} \cup \sqrt{2} \mathbb{Q})$ is dense in \mathbb{R}, it follows that for any $1 \leq i \leq n$, there exist a point $q_{i} \in \mathbb{Q} \cap\left[t_{i-1}, t_{i}\right]$ and a point $r_{i} \in\left[t_{i-1}, t_{i}\right] \backslash(\mathbb{Q} \cup \sqrt{2} \mathbb{Q})$. Thus $f\left(q_{i}\right)=0$ and $f\left(r_{i}\right)=2$ and for any $s \in\left[t_{i-1}, t_{i}\right]$ we have $0 \leq f(s) \leq 2$; thus $m\left(f ;\left[t_{i-1}, t_{i}\right]\right)=0$ and $M\left(f ;\left[t_{i-1}, t_{i}\right]\right)=2$ for any $1 \leq i \leq n$. This gives $L(f, P)=0$ and $U(f, P)=\sum_{i=1}^{n} 2\left(t_{i}-t_{i-1}\right)=2$ for any partition P. Therefore $L(f)=0 \neq 2=U(f)$ and this shows that f is not integrable.

Problem 2. i) Given a finite set $S=\left\{x_{1}, \ldots, x_{n}\right\} \subset[a, b]$, let f : $[a, b] \rightarrow \mathbb{R}$ defined by $f\left(x_{i}\right)=c_{i}, 1 \leq i \leq n$ and $f(x)=0, x \notin S$. Prove that f is integrable and $\int_{a}^{b} f=0$.
ii) If $f, g:[a, b] \rightarrow \mathbb{R}$ are such that $f(x)=g(x)$ for all $x \in[a, b]$ except for a finite set, and f is integrable on $[a, b]$, prove that g is integrable on $[a, b]$ and $\int_{a}^{b} g=\int_{a}^{b} f$.

Solution. Let M be such that $\left|c_{i}\right| \leq M, \forall 1 \leq i \leq n$.
Given $\epsilon>0$ Let $P=\left\{0=t_{0}<t_{1}<\cdots<t_{n}=1\right\}$ be a partition such that $t_{k+1}-t_{k}=\frac{\epsilon}{2 n M}$.

An element x_{i} may belong to at most two partition intervals $\left[t_{k-1}, t_{k}\right]$.
Therefore in the set of intervals $\left[t_{k-1}, t_{k}\right]$ with there are at most $2 n$ intervals which contain an element in the sequence and these are the intervals where $M\left(f,\left[t_{k-1}, t_{k}\right]\right)=c_{i}$ if $c_{i}>0$, for the rest we have $M\left(f,\left[t_{k-1}, t_{k}\right]\right)=0$.

Then $U(f, P) \leq 2 n M \cdot \frac{\epsilon}{4 n M}=\frac{\epsilon}{2}$.
A similar argument shows that $L(f, P) \geq-\frac{\epsilon}{2}$.
Thus we have shown that there exists a partition P with $U(f, P)-$ $L(f, P) \leq \epsilon$, hence f is integrable.

In fact our partition satisfies $-\frac{\epsilon}{2} \leq L(f, P) \leq U(f, P) \leq \frac{\epsilon}{2}$, therefore, since ϵ is arbitrary, it follows that $0 \leq L(f) \leq U(f) \leq 0$ which gives the value of the integral to be 0 .
ii) Let $h=g-f ; h$ has the property that $h(x)=0$ for all $x \in[0,1]$ except for a finite set, thus it satisfies i). Therefore h is integrable and $\int_{a}^{b} h=0$.

Now $g=h+f$ and both h and f are integrable, thus g is integrable and $\int_{a}^{b} g=\int_{a}^{b} h+\int_{a}^{b} f=\int_{a}^{b} f$.

