INVARINANCE OF PLURIGENERA IN POSITIVE AND MIXED CHARACTERISTIC

IACOPO BRIVIO

Abstract. We study the problem of deformation invariance of plurigenera for families of pairs in mixed and positive characteristic. We extend a famous theorem of Siu to certain families of surfaces with Kodaira dimension one, and to some higher dimensional families of pairs as well.

Contents

1. Introduction 1
2. Preliminaries 2
3. Surfaces of Kodaira dimension one 6
4. Higher dimensional families 7
5. Final remarks 8
References 9

1. Introduction

A theorem of Siu ([16, Theorem 0.1]) states that, if $X \rightarrow \mathbb{D}$ is a smooth projective family of complex algebraic varieties over the disk, the plurigenera $P_m(X_t)$ are independent of t. The proof is analytic, as it uses deep results from complex analysis, most notably the Ohsawa-Takegoshi extension theorem. There is currently no algebraic proof of this result. When the fibers X_t are of general type, Kawamata has shown in [12] that Siu’s argument can be reformulated in algebraic terms, even allowing fibers with canonical singularities. Furthermore, Nakayama ([14, Theorem 8]) has shown that deformation invariance of plurigenera follows from the Minimal Model Program and the Abundance Conjecture. In positive and mixed characteristic the situation is more complicated: it is shown by Katsura and Ueno [11] that deformation invariance of plurigenera fails for certain families of elliptic surfaces and Suh [17] constructs examples of families of surfaces of general type where P_1 jumps by any specified amount. On the positive side, Katsura and Ueno also show that one can run the relative MMP on a smooth family of surfaces and, as a consequence, the Kodaira dimension is constant. It is then natural to conjecture the following.

Conjecture 1.1. Let $(X, B) \rightarrow \mathbb{D}$ be a projective family of log canonical pairs, over a DVR R with perfect residue field k of characteristic $p > 0$, and perfect fraction field K. Then there exists an integer m_0, such that for any positive integer $m \in m_0 \mathbb{N}$ we have

$$h^0(m(K_{X_K} + B_K)) = h^0(m(K_{X} + B))$$

1
We refer to Conjecture 1.1 as asymptotic invariance of plurigenera. Egbert and Hacon [7] study asymptotic invariance of plurigenera for log smooth families of relative dimension 2: they show it holds when

- \(\kappa(K_X + B) \neq 1 \); or
- \(\kappa(K_X + B) = 1 \) and the general fiber of the Iitaka fibration \(X_k \rightarrow \text{Proj} R(K_X + B_X) \) is \(\mathbb{P}^1_k \).

Hence, it remains to prove it for families of elliptic surfaces.

In this paper we study Conjecture 1.1 under the additional assumption of \(K_X + B \) being semi-ample. Our main technical result is Lemma 2.6, which shows that asymptotic invariance of plurigenera is equivalent to the separability of the relative Iitaka fibration along \(X_0 \). As a consequence we have the following result.

Theorem 1.1. Let \(\delta : (X, B) \rightarrow D \) be a projective family of log canonical pairs, such that \(K_X + B \) is semi-ample. Let \(F_K \) be the general fiber of the Iitaka fibration of \(X_K \) such that \(p \nmid D_K \cdot F_K \), then asymptotic invariance of plurigenera holds for \(\delta \).

As a consequence of the techniques used to prove the above Theorem, we have

Theorem 1.2. Let \(\delta : X \rightarrow D \) be a family of quasi-elliptic surfaces. Then asymptotic invariance of plurigenera holds for \(\delta \).

Finally, combining Theorem 1.1 with the BAB Theorem [2], we extend the above results to higher-dimensional families.

Theorem 1.3. Let \(\delta : (X, B) \rightarrow D \) be a family of pairs in positive or mixed characteristic, such that \(K_X + B \) is semiample, and \(B_0 \) is ample over \(\text{Proj} R(K_{X_0} + B_0) \). Suppose furthermore \(\kappa(K_{X_0} + B_0) \geq \dim X_0 - 2 \). Then, for every \(\epsilon \) such that \(X_0 \) is \(\epsilon \)-klt, there exists a prime \(p_0 = p_0(\epsilon) \) such that if \(p > p_0 \), asymptotic deformation invariance of plurigenera holds for \(\delta \).

2. Preliminaries

We fix notation and recall some results that will be used in the following sections.

2.1. Notation and conventions.

\(R \) will be a discrete valuation ring with residue field \(k = \mathbb{F} \) of characteristic \(p \), perfect fraction field \(K \) and uniformizer \(\varpi \). Set \(D := \text{Spec}(R) \): a smooth projective morphism \(\delta : X \rightarrow D \). We will write \(X_0 \) for the central fiber \(X_k \) and \(X_1 \) for the geometric generic fiber \(X_K \). A family of pairs over \(D \) is a projective morphism \(\delta : (X, B) \rightarrow D \) such that \((X_t, B_t) \) is lc for \(t = 0, 1 \). We say that asymptotic deformation invariance of plurigenera holds for \(\delta \) if there exists an \(m_0 \in \mathbb{N} \) such that for all \(m \in m_0 \mathbb{N} \) the equality \(P_m(X_1) = P_m(X_0) \) holds. We now recall some statements about intersection numbers we will need in the next sections.

Definition 2.1. [5, Definition 1.7], Let \(X \) be a proper scheme over a field \(K \). Let \(D_1, ..., D_r \) be Cartier divisor, where \(r \geq \dim X \). Then the intersection number \(D_1 \cdot ... \cdot D_r \) is defined as the coefficient of \(m_1 \cdot ... \cdot m_r \) in the polynomial \(\chi(X, m_1 D_1 + ... + m_r D_r) \).

In particular, intersection of Cartier divisors has integer values. If \(Y \subset X \) is a closed subscheme of dimension \(\leq s \)
\[D_1 \cdot \ldots \cdot D_s \cdot Y = D_1|_Y \cdot \ldots \cdot D_s|_Y \]

As the Euler characteristic of a line bundle is constant in a flat family, we have the following

Proposition 2.1. Let \(X \to \mathbb{D} \) be a flat projective morphism of relative dimension \(n \) and let \(D_1, \ldots, D_n \) be Cartier divisors on \(X \). Then

\[D_{1,K} \cdot \ldots \cdot D_{n,K} = D_{1,k} \cdot \ldots \cdot D_{n,k} \]

More generally we have

Proposition 2.2. Let \(X \to \mathbb{D} \) be a flat projective morphism of relative dimension \(n \), let \(F \subset X \) be a regularly embedded subscheme of relative dimension \(d \), flat over \(\mathbb{D} \), and let \(D_1, \ldots, D_d \) be Cartier divisors on \(X \). Then

\[D_{1,K} \cdot \ldots \cdot D_{d,K} \cdot F_K = D_{1,k} \cdot \ldots \cdot D_{d,k} \cdot F_k \]

Sketch of proof. For every \(j = 1, \ldots, d \) we can write

\[D_j \sim A_j^+ - A_j^- \]

where \(A_j^\pm \) are ample divisors on \(X \), such that the restriction map \(H^0(X, A_j^\pm) \to H^0(X_0, A_j^\pm|_{X_0}) \) is surjective and \(A_j^\pm \) is general in its linear system for all \(j \). Up to replacing the \(D_j \) with \(A_j^+ - A_j^- \), we may then assume that \(\mathcal{J} := \sum_j \mathcal{I}_{D_j} + \mathcal{I}_F \) is a l.c.i. ideal sheaf. Let \(P \) be the zero-dimensional \(\mathbb{D} \)-scheme defined by \(\mathcal{J} \): then we need to show

\[\text{length}(P_K) = \text{length}(P_k) \]

Since \(\mathcal{J} \) is l.c.i., \(P \) is CM, hence \(P \to \mathbb{D} \) is flat by [15, Lemma 10.127.1]. In particular, \(\chi(O_{P_K}) = \chi(O_{P_k}) \). But \(\chi(O_{P_k}) = \text{length}(P_k) \), thus we conclude. \(\square \)

2.2. **Boundedness of Fanos.** Recall that, if \(\mathcal{P} = \{ (X, B) \} \) is a set of pairs, we say it is *bounded* if there exist finitely many projective morphisms \(V^i \to T^i \) of varieties and reduced divisors \(C^i \) on \(V^i \) such that for each \((X, B) \in \mathcal{P} \) there exist an \(i \), a closed point \(t \in T^i \) and an isomorphism \(\phi : (X, \text{Supp} B) \to (V^i_t, C^i_t) \).

Definition 2.2. A projective pair \((X, B) \) over an algebraically closed field \(K \) is *log Fano* if \(-(K_X + B)\) is big and nef and with klt singularities.

It is conjectured that log Fano pairs are bounded.

Conjecture 2.3 (BAB Conjecture). *Let \(K \) be an algebraically closed field and let \(\epsilon > 0 \) be a real number: the set*

\[\mathcal{P}_{d,\epsilon}^K = \{ (X, B)/K \ \epsilon\text{-lc log Fano of dimension } d \} \]

is bounded.

The Conjecture is known when \(d = 2 \) by [1], and over an algebraically closed field of characteristic zero by [2].
2.3. The relative Iitaka fibration. Let $\delta : (X, B) \to \mathbb{D}$ be a family of pairs and suppose that $K_X + B$ is semiample over \mathbb{D}. We have a natural morphism of \mathbb{D}-schemes

$$f : X \to Z := \text{Proj} R(K_X + B)$$

induced by the the relative linear series $H^0(X, m(K_X + B))$, for a sufficiently divisible m. By [13, Theorem 2.1.26] we have that $f_* \mathcal{O}_X = \mathcal{O}_Z$. We then say that f is the relative Iitaka fibration of X over \mathbb{D}. We denote by d the dimension of f.

Definition 2.3. With the same notation introduced above, let Σ be a sufficiently general section of $Z \to \mathbb{D}$ and let $F := X \times_\Sigma C$. We call $f|_F : F \to \Sigma \equiv \mathbb{D}$ a family of general fibers of f. Note that $f|_F$ is a flat morphism by [15, Lemma 10.127.1].

By definition, there is an ample \mathbb{Q}-divisor A on Z such that $f^* A \sim_{\mathbb{Q}} K_X + B$. Note that $f_1 : X_1 \to Z_1$ is the morphism induced by the full linear series $H^0(X_1, m(K_{X_1} + B_1))$, while f_0 is induced by the sub linear series $H^0(X, m(K_X + B))|_{X_0}$. Then we have a factorization $f_0 : X_0 \to Z_0$ where h_0 is the Iitaka fibration of X_0 and q_0 is induced by the linear projection associated with the inclusion $H^0(X, m(K_X + B))|_{X_0} \subset H^0(X_0, m(K_{X_0} + B_0))$. In particular, since f has connected fibers, the generically finite morphism q_0 is either purely inseparable or birational.

Remark 2.4. If $(X, B) \to \mathbb{D}$ is a family of pairs, requiring $K_X + B$ to be semiample over \mathbb{D} is a very strong assumption in general. An exception is the case of dimension two:

Lemma 2.5. [11, Lemma 9.4] Let $X \to \mathbb{D}$ be a family of surfaces, and suppose X_0 contains an exceptional curve of the first kind E. Then there is a discrete valuation ring $\overline{R} \supset R$, and a commutative diagram

$$
\begin{array}{ccc}
\overline{X} & \xrightarrow{\pi} & X \otimes \overline{R} \\
\downarrow{\delta} & & \downarrow{\delta} \\
\mathbb{D} & \xrightarrow{} & \mathbb{D}
\end{array}
$$

where $\overline{\mathbb{D}} := \text{Spec}(\overline{R})$, $\overline{\delta}$ is a proper, separated, finite-type, smooth morphism and π is a proper surjective morphism such that π_0 contracts E and, on the generic fiber, π induces a contraction of an exceptional curve of the first kind.

This result has been generalized to the case of log smooth families of klt surfaces (see [7, Corollary 3.5]).

Lemma 2.6. Let $\delta : (X, B) \to \mathbb{D}$ be a family of pairs such that $K_X + B$ is semiample over \mathbb{D}. Then $\kappa(K_{X_0} + B_0) = \kappa(K_{X_1} + B_1)$, and asymptotic deformation invariance of plurigenera holds for δ if and only if q_0 is birational.

Proof. Let $f : X \to Z/\mathbb{D}$ be the relative Iitaka fibration and let $m(K_X + B) \sim f^* A$ for some ample divisor A on Z. As $Z \to \mathbb{D}$ is flat, it has equidimensional fibers. Since q_0 is generically finite, the pullback of a big divisor via q_0 is still big. By the projection formula

$$h^0(X_0, dm(K_{X_0} + B_0)) = h^0(Z_0, q_0^*(dA_0))$$
of general fibers: by Proposition 2.2 we have
\[h^0(X_1, dm(K_{X_1} + B_1)) = h^0(Z_1, dA_1) \]
thus \(\kappa(K_{X_0} + B_0) = \kappa(K_{X_1} + B_1) \). Suppose now \(q_0 \) is birational: then the first equation becomes
\[h^0(X_0, dm(K_{X_0} + B_0)) = h^0(Z_0, dA_0) \]
If \(d \gg 0 \) Serre vanishing yields
\[h^0(Z_1, dA_1) = \chi(Z_1, dA_1) \]
hence, by the invariance of \(\chi \) in a flat family, asymptotic deformation invariance of plurigenera holds. Suppose now that asymptotic deformation invariance of plurigenera holds for \(\delta \): then \(H^0(X, m(K_X + B))|_{X_0} = H^0(X_0, m(K_{X_0} + B_0)) \), hence \(q_0 = \text{id}_{Z_0} \).

We should prove a result of the following kind

Lemma 2.7. Let \(\pi : X \to Y \) be a degree \(p^e \) purely inseparable morphism of smooth projective varieties over an algebraically closed field of positive characteristic. Then \(p^e \cdot \text{deg} \pi^* Z \) for all \(Z \in \text{CH}_0(Y) \).

Proof. Immediate from the definition, see [8]. \(\square \)

Suppose \(f : (X, B) \to \mathbb{D} \) is the relative Iitaka fibration of a family of pairs such that \(K_X + B \) is semiample over \(\mathbb{D} \) and suppose that \(q_0 \) is purely inseparable. If \(F \to \mathbb{D} \) is a family of general fibers, by Lemma 2.7 we can write
\[F_0 = p^e F_{0, \text{red}} \quad F_{0, \text{red}} := h^0_0(\text{point}) \]
As a consequence, we have the following sufficient condition for asymptotic deformation invariance of plurigenera:

Lemma 2.8. Let \(\delta : (X, B) \to \mathbb{D} \) be a family of pairs such that \(K_X + B \) is semiample over \(\mathbb{D} \). Let \(F_1 \) be a general fiber of the Iitaka fibration \(f_1 : X_1 \to Z_1 \), let \(d = \text{dim} F_1 \), and suppose there exists a Cartier divisor \(D_1 \) on \(X_1 \) such that \((D_1|_{F_1})^d \)

is not divisible by \(p \). Then asymptotic deformation invariance of plurigenera holds for \(\delta \).

Proof. Up to a finite extension of \(R \) we may assume that \(D_1 = D_K \otimes \overline{K} \) for some Cartier divisor \(D_K \) on \(X_K \). Taking the closure of \(D_K \) in \(X \) we may also assume that \(D_K = D|_{X_K} \) for some Cartier divisor \(D \) on \(X \). Let now \(F \to \mathbb{D} \) be a family of general fibers: by Proposition 2.2 we have
\[(D|_{F_K})^d = (D|_{F_k})^d \]
By contradiction, suppose that asymptotic deformation invariance of plurigenera fails for \(\delta \), so that \(q_0 \) is purely inseparable. Then
\[(D|_{F_k})^d = D_k^d \cdot F_k = p^e(D_k^d \cdot F_k, \text{red}) \]
for some \(e \geq 1 \), where the last equality follows by Lemma 2.7. As \(p \nmid (D_1|_{F_1})^d = (D_K|_{F_K})^d \) we conclude. \(\square \)

\(^1\)Might want to make it a Lemma: a divisor \(D \) on \(X \) has Iitaka dimension \(l \) if there is a birational morphism \(\mu : Y \to X \) and a contraction \(g : Y \to V \) to an \(l \)-dimensional variety such that \(\mu^* D = g^* H \) with \(H \) a big divisor on \(V \).
3. Surfaces of Kodaira dimension one

In this section we will consider families $\delta : X \to D$ with $\dim \delta = 2$ such that $\kappa(X_1) = \kappa(X_0) = 1$. As we are interested in asymptotic deformation invariance of plurigenera, by Lemma 2.5 we may assume that those families are relatively minimal.

Proposition 3.1. Let $\delta : X \to D$ be a family of minimal surfaces with Kodaira dimension one. If there exists a divisor D_1 on X_1 such that $p \nmid D_1 \cdot F_1$, then asymptotic deformation invariance of plurigenera holds for δ.

Proof. By contradiction, suppose q_0 is purely inseparable. Up to a finite extension of R, we may assume that $D_1 = D_K \otimes \overline{K}$ for some divisor D_K on X_K. Then, by Proposition 2.1, we would have

$$D_K \cdot F_K = D_k \cdot F_k = p^e(D_k \cdot F_k, \text{red})$$

a contradiction \square

3.1. The quasi-elliptic case. We now investigate families of quasi-elliptic surfaces. As quasi-elliptic surfaces only exist over fields of characteristic 2 or 3, we will restrict ourselves to equicharacteristic R. Without loss of generality we can also assume R is complete hence, by Cohen’s Structure Theorem (see [4]), $R = k[[t]]$.

Definition 3.1. A smooth surface S over an algebraically closed field k of positive characteristic is called quasi-elliptic if $\kappa(S) = 1$ and the general fiber of its Iitaka fibration is a rational curve with one (ordinary) cusp.

Remark 3.2. Usually one does not require $\kappa(S) = 1$ in the definition of a quasi-elliptic surface. We choose to do so to ease the exposition.

We follow the notation introduced in [3]: if $S \to B$ is a quasi-elliptic surface, let $\Sigma \subset S$ be the set of points P such that f is not smooth at P, and let Σ_0 be a one-dimensional locally closed subset of Σ such that, for each $P \in \Sigma_0$, the fiber $f^{-1}(f(P))$ has an ordinary cusp at P. Let Γ be the closure of Σ_0 in S: by [3, Proposition 3], we have an isomorphism

$$\Gamma^{(p)} \cong B$$

In particular, if F is a general fiber of f we have

$$\Gamma : F = p$$

We call Γ the line of cusps of the quasi-elliptic surface $S \to B$.

Let now $\delta : X \to D$ be a family of minimal quasi-elliptic surfaces, i.e. X_t is a quasi-elliptic surface for $t = 0, 1$. Let Γ_1 be the line of cusps of X_1: up to a finite extension of R we may assume that Γ_1 is actually defined over K, so that $\Gamma_1 = \Gamma_K \otimes \overline{K}$ for some $\Gamma_K \subset X_K$. Let Γ be the flat limit/closure of Γ_K in X:

Lemma 3.3. Γ_0 is the line of cusps of X_0.

\[\text{[3] uses this notation: if } X \text{ is a variety in positive characteristic, they write } F^n : X^{(p^{-n})} \to X \text{ for the Frobenius. I don’t know if it is the absolute or the geometric one, it should be explained in [BMII] but I can’t find the paper. It might also be that it does not actually matter what Frobenius this is, I care just about } \Gamma : F.\]
Proof. Let \(f : X \to Z/\mathbb{D} \) be the relative Iitaka fibration, let \(F \to \mathbb{D} \) be a family of general fibers and let \(P_1 \in F_1 \) be the cusp point. Up to a finite extension of \(R \) we may assume \(P_1 = P_K \otimes \overline{K} \) for some \(K \)-point in \(F_K \). Let \(P \) be the flat limit/closure of \(P_K \) in \(F \): it is then enough to show that \(P_0 \) is the cusp of \(F_{0,\text{red}} \). We have the normalization morphism \(\nu_K : \mathbb{P}^1_K \to F_K \), which corresponds to a \(K \)-point \([\nu_K] \in \text{Hom}_K(\mathbb{P}^1_K, F_K) \). As the Hom-scheme is proper, we can extend \([\nu_K] \) to an \(R \)-point \([\nu] \in \text{Hom}_R(\mathbb{P}^1_R, F) \). Let now \(Q_K \in \mathbb{P}^1_K \) be the unique point mapping to \(P_K \) and let \(Q \subset \mathbb{P}^1_D \) be its flat limit/closure: note that \(P \) and \(Q \) are section of \(F \to \mathbb{D} \) and \(\mathbb{P}^1_D \to \mathbb{D} \) respectively. Identifying \(P \) with its image in \(X \), we further have that \(P \) is a section of \(X \to \mathbb{D} \). Consider the morphism

\[
\psi : \mathbb{P}^1_D \to F \hookrightarrow X/\mathbb{D}
\]

Let \(u \) be a local formal coordinate on \(\mathbb{P}^1_D \) and let \(x, y \) be local formal coordinates on \(X \), and suppose that \(Q \) and \(P \) are given by \(u = 0 \) and \(x = y = 0 \) respectively. In these coordinates, the maps \(\psi_K \) corresponds to a morphism of complete \(k((t)) \)-algebras

\[
\psi^K : k((t))[x,y] \to k((t))[u]
\]

with

\[
x \mapsto a(t)u^2
\]

\[
y \mapsto b(t)u^3
\]

Up to rescaling \(a(t) \) and \(b(t) \) by some integer power of \(t \), we may assume \(a(t), b(t) \in k[[t]] \) and \(a(0), b(0) \in k^\times \) this allows to define a map \(\psi^K_0 \) on the central fiber. It is then clear from the equations for \(\psi^K_0 \) that \(P_0 \) is the cusp of \(F_{0,\text{red}} \). \(\square \)

Theorem 3.4. Let \(\delta : X \to \mathbb{D} \) be a family of quasi-elliptic surfaces. Then asymptotic deformation invariance of plurigenera holds for \(\delta \).

Proof. Let \(f : X \to Z/\mathbb{D} \) be the relative Iitaka fibration. By contradiction, suppose that \(q_0 \) is purely inseparable, and let \(F \to \mathbb{D} \) be a family of general fibers. Up to a finite extension of \(R \), we may assume that \(\Gamma_1 = \Gamma_K \otimes \overline{K} \). Then \(p = \Gamma_K \cdot F_K \) by \([3, \text{Proposition 1}]\). By Proposition 2.1 intersection numbers are constant in flat families, thus we also have \(\Gamma_0 \cdot F_0 = p \). On the other hand \(\Gamma_0 \cdot F_0 = p^e(\Gamma_0 \cdot F_{0,\text{red}}) = p^{e+1} \), where the last equality follows from Lemma 3.3. \(\square \)

4. Higher dimensional families

We extend [14, Theorem 8] to some pairs in mixed and positive characteristics:

Theorem 4.1. Let \(\delta : (X,B) \to \mathbb{D} \) be a family of pairs in positive or mixed characteristic, such that \(K_X+B \) is \(\mathbb{D} \)-semiample and \(B_0 \) is ample over \(\text{Proj}R(K_{X_0}+B_0) \). Suppose furthermore \(\kappa(K_{X_0}+B_0) \geq \dim X_0 - 2 \). Then, for every \(e \) such that \(X_0 \) is \(e \)-klt, there exists a prime \(p_0 = p_0(e) \) such that if \(p > p_0 \), asymptotic deformation invariance of plurigenera holds for \(\delta \).

Proof. Let \(f : X \to Z/\mathbb{D} \) be the relative Iitaka fibration and let \(F \to \mathbb{D} \) be a family of general fibers. If \(\kappa = \dim \delta \) then \(F_1 \) consists of a single reduced point. By contradiction, suppose \(q_0 \) is purely inseparable: then \(F_0 \) is a \(p^e \)-th thickening of a point in \(X_0 \). In particular \(\chi(\mathcal{O}_{F_0}) > 1 = \chi(\mathcal{O}_{F_1}) \), contradicting the flatness of \(F \to \mathbb{D} \). Suppose now \(\kappa < \dim \delta \): as \(B_0 \) is ample over \(\text{Proj}R(K_{X_0}+B_0) \) we have it is also ample over \(Z_0 \) (ampleness does not care about reducedness) hence, since
$-K_{F_0}$ is ample, so is $-K_{F_1}$. Let ϵ so that X_0 is ϵ-klt: then X_1 is ϵ-klt too. By Adjunction, F_1 has ϵ-klt singularities hence it is also ϵ-lc thus, by [1], it belongs to a bounded family. In particular, the sets

\[V_{\epsilon,d}^1 = \{ -(K_M + \Delta)^d : (M, \Delta)/K \text{ is } \epsilon\text{-lc}, \log \text{Fano and } \dim M = d \} \]

\[V_{\epsilon,d}^0 = \{ -(K_M + \Delta)^d : (M, \Delta)/k \text{ is } \epsilon\text{-lc, log Fano and } \dim M = d \} \]

are finite. Let then p_0 be the smallest prime such that $p_0 > \max V_{\epsilon,d}^1 / \min V_{\epsilon,d}^0$ and suppose, by contradiction, that q_0 is inseparable. Then

\[\max V_{\epsilon,d}^1 \geq (-K_{F_1})^d = (-K_{X_1})^d \cdot F_1 = (-K_{X_0})^d \cdot F_0 = p^e((-K_{X_0})^d \cdot F_{0,\text{red}}) = p^e(-K_{F_{0,\text{red}}})^d > \max V_{\epsilon,d}^1 \]

a contradiction. □

Remark 4.2. It would be interesting to remove the dependence of p_0 from ϵ. Is it true that

\[\lim_{\epsilon \to 0} p_0(\epsilon) = \infty? \]

5. **Final remarks**

Let $\delta : (X, B) \to D$ be a family as in Theorem 4.1 and suppose R is of equicharacteristic p. As the proof of Theorem 4.1 shows, $f : X \to Z/D$ is a fibration in (mildly singular) Fano varieties. In particular, X is globally F-regular over Z (see [9, Definition 2.1]). Then we can use

Lemma 5.1. [9, Lemma 2.3] Let $f : X \to Z$ be a projective morphism from a normal variety X to a variety Z over an F-finite field k of characteristic $p > 0$. Suppose that L is an f-nef line bundle on X. If X is globally F-regular over Z, then

\[R^1f_\ast L = 0 \]

for all $i > 0$.

For $L = O_X$, we obtain a short exact sequence on Z

\[0 \to f_\ast O_X \to f_\ast O_X(X_0) \to f_{0,\ast} O_{X_0} \to 0 \]

In particular $f_{0,\ast} O_{X_0}$ has rank one: if q_0 were purely inseparable, $f_{0,\ast} O_{X_0} = q_{0,\ast} O_{Z_0}$ would be a rank p^e vector bundle/coherent sheaf. This might be suggesting that, at least for equicharacteristic families, methods from F-singularity theory might have a role to play. If that is indeed the case, one should start with proving the following

Proposition 5.1. Let $\delta : X \to D$ be a smooth (equicharacteristic) family of surfaces with Kodaira dimension one, such that F_1 and $F_{0,\text{red}}$ is an ordinary elliptic curve. Then asymptotic deformation invariance of plurigenera holds.

Recall that an elliptic curve is ordinary if and only if it is F-split. Lemma 5.1 does not hold for F-split morphisms, but it is possible that some other method will yield

\[R^1f_\ast O_X \text{ is } \varpi\text{-torsion-free} \]

which is equivalent to q_0 being birational.
References

Department of Mathematics, UC San Diego, San Diego, California 92093
E-mail address: ibrivio@ucsd.edu