Exercise 1. For each of the following, evaluate the limit or prove it does not exist.

A. \[\lim_{x \to 3} \frac{\sqrt{3x} - 3}{x - 3} \]

B. \[\lim_{x \to \infty} \frac{3x^4 + 6x^3 - 12x + 3}{(2x+1)(5x^2+4x+16)(x-2)} \]

C. \[\lim_{x \to 0} \frac{3x^4 - 2x^3 + x^2 + 10x}{(4x^2 - x)(x^4 + x^3 + x + 2)} \]

D. \[\lim_{x \to 0^+} \lim_{y \to 0} xy \]

E. \[\lim_{y \to 0^+} \lim_{x \to 0^+} xy \]

A. Multiply by the conjugate.

\[
\lim_{x \to 3} \frac{\sqrt{3x} - 3}{x - 3} = \lim_{x \to 3} \frac{\sqrt{3x} - 3}{x - 3} \cdot \frac{\sqrt{3x} + 3}{\sqrt{3x} + 3} \\
= \lim_{x \to 3} \frac{3(x - 3)}{(x - 3)(\sqrt{3x} + 3)} \\
= \lim_{x \to 3} \frac{3}{\sqrt{3x} + 3} \\
= \frac{1}{2}.
\]

B. The numerator and denominator are both polynomials of degree four, so the limit is the ratio of their leading coefficients, which is \(\frac{3}{10} \). You can show this more formally by dividing both the numerator and denominator by \(x^4 \) and proceeding from there.

C. Factor out \(x \) from both the numerator and denominator and cancel them. Then as \(x \) tends to 0, the numerator tends to 10 and the denominator tends to \((-1)(2)\), so the limit is the quotient, namely \(-5\).

D. We can evaluate the first limit, \(\lim_{y \to 0^+} xy \), by taking \(x \) as a fixed positive number; then this is just 1. So the next limit is \(\lim_{x \to 0^+} 1 = 1 \).

E. This limit does not exist. Consider the first limit we have to take: \(\lim_{x \to 0^+} xy \). If \(y \) is positive, then the limit is 0. But if \(y \) is negative, the limit is \(\infty \). So in \(\lim_{y \to 0^+} \lim_{x \to 0^+} xy \), the left and right limits do not agree.
Exercise 2. Suppose $f, g : S \to \mathbb{R}$ and $h : f(S) \to \mathbb{R}$ are monotonic functions. For each of the following functions, either prove it is monotonic and provide an example to show that it is not necessarily monotonic.

A. $f + g$

B. fg

C. $h \circ f$

D. $\frac{1}{f}$, assuming $0 \notin f(S)$.

A. $f(x) = x$ and $g(x) = -x^3$ are both monotonic on \mathbb{R}, but their sum is not.

B. If $f(x) = g(x) = x$ on \mathbb{R}, then both f and g are monotonic, but their product is not.

C. $h \circ f$ is monotonic.

Proof. Assume that f is monotonically increasing. Let $x, y \in S$ with $x < y$; we have $f(x) \leq f(y)$. If h is monotonically increasing, then $h(f(x)) \leq h(f(y))$, so $h \circ f$ is monotonically increasing. If h is monotonically decreasing, then $h(f(x)) \geq h(f(y))$, so $h \circ f$ is monotonically decreasing as well.

The case where f is monotonically decreasing is analogous.

D. Take S to be $\mathbb{R} \setminus 0$, and define $f(x) = x$ on S. Then f is monotonic and 0 is not in the image of f, but $\frac{1}{f}$ is not monotonic.

Exercise 3. A. Suppose that $S \subset \mathbb{R}$ is bounded above, $f : S \to \mathbb{R}$ is monotonic, and $x = \sup S$. Show that the limit from the left of f at x either converges, diverges to ∞, or diverges to $-\infty$.

B. As a consequence of the above, show that if S is an arbitrary (i.e., potentially unbounded) subset of \mathbb{R} and $x \in \mathbb{R}$ is the limit of some increasing sequence in S, then the limit from the left of f at x either converges, diverges to ∞, or diverges to $-\infty$.
A. Proof. Suppose that \(f \) is monotonically increasing; the decreasing case is analogous. Clearly if \(f \) is increasing, then the limit from the left at \(x \) cannot be \(-\infty\). We aim to show that if \(f \) does not converge from the left at \(x \), then in fact it diverges to \(\infty \).

Suppose it did not diverge to \(\infty \): this would mean there exists some number \(M \) and a positive number \(\delta \) such that if \(t \in (x - \delta, x) \), then \(f(t) < M \). But notice that since \(f \) is monotonically increasing, the inequality actually holds for every value of \(t \) less than \(x \). So \(f \) is bounded above on \(T = \{ t \in S | t < x \} \) by \(M \).

Define \(R = \sup f(T) \). Let \(\varepsilon > 0 \). Since \(R \) is the supremum, there exists a \(t \in T \) such that \(R \geq f(t) > R - \varepsilon \). Take \(\delta = x - t \), which is positive. Using the fact that \(f \) is monotonically increasing, we have that if \(u \in (x - \delta, x) \), then \(R \geq f(u) \geq f(t) > R - \varepsilon \). Thus by the definition of limit, the limit from the left of \(f \) at \(x \) is \(R \).

This contradicts our hypothesis, so we are done. \(\square \)

B. Proof. Take \(T = \{ t \in S | t < x \} \) and consider the restriction of \(f \) to \(T \); apply part A. The reason why we require \(x \) to be the limit of some (strictly) increasing sequence is so that the limit from the left at \(x \) makes sense. \(\square \)

Exercise 4. Suppose that \(f : \mathbb{R} \to \mathbb{R} \) is continuous. Show that \(f \) is monotonic if and only if \(f^{-1}(\{y\}) \) is an interval (though potentially empty) for every \(y \in \mathbb{R} \).

Proof. For the forward direction, assume that \(f \) is monotonic. Let \(y \in \mathbb{R} \), and suppose \(a \) and \(b \) are in the preimage of \(y \) under \(f \), with \(a \leq b \). Because \(f \) is monotonic, for any \(x \in [a, b] \), \(f(x) \) is between \(f(a) \) and \(f(b) \). But here we supposed that \(f(a) = y = f(b) \), so \(f(x) = y \) as well, and that means \(x \in f^{-1}(\{y\}) \). Thus \(f^{-1}(\{y\}) \) is an interval, and we’re done.

For the converse, suppose \(f^{-1}(\{y\}) \) is an interval (though potentially empty) for every \(y \in \mathbb{R} \). Suppose for contradiction that \(f \) were not monotonic. Then there exist \(a < b < c \) in \(\mathbb{R} \) such that either (i) \(f(b) \) is greater than both \(f(a) \) and \(f(c) \); or (ii) \(f(b) \) is less than both \(f(a) \) and \(f(c) \).

In case (i), consider the greater of \(f(a) \) and \(f(c) \); assume without loss of generality that \(f(a) \) is greater. Then by the intermediate value theorem, there
exists a point \(x \in (b, c) \) with \(f(a) = f(x) \). But now \(f^{-1}(\{f(x)\}) \) contains both \(a \) and \(x \) without containing \(b \), which is between them. Thus the preimage of \(f(x) \) is not an interval, and we have a contradiction.

Case (ii) is analogous. \(\square \)

Exercise 5. Evaluate the following limits:

A. \(\lim_{x \to 1} \frac{x^3 - 1}{x - 1} \)

B. \(\lim_{x \to 1} \frac{x^n - 1}{x - 1} \), for \(n \in \mathbb{N} \).

C. \(\lim_{x \to 1} \frac{x^n - x^m}{x - 1} \), for \(n, m \in \mathbb{N} \).

A. Factor the numerator:

\[
\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{x - 1} = \lim_{x \to 1} (x^2 + x + 1) = 3.
\]

B. Same technique:

\[
\lim_{x \to 1} \frac{x^n - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^{n-1} + x^{n-2} + \cdots + x + 1)}{x - 1} = \lim_{x \to 1} (x^{n-1} + x^{n-2} + \cdots + x + 1) = n.
\]

C. Exploit part B.

\[
\lim_{x \to 1} \frac{x^n - x^m}{x - 1} = \lim_{x \to 1} \frac{x^n - 1 - (x^m - 1)}{x - 1} = \lim_{x \to 1} \left[\frac{x^n - 1}{x - 1} - \frac{x^m - 1}{x - 1} \right] = \lim_{x \to 1} \frac{x^n - 1}{x - 1} - \lim_{x \to 1} \frac{x^m - 1}{x - 1} = n - m.
\]
Exercise 6 (Bonus). Suppose that $f : \mathbb{R} \to \mathbb{R}$ is monotonically increasing. Show that the set of points at which f is discontinuous is countable.

Proof. It follows from what we showed in Exercise 3 that at every point in \mathbb{R}, the left- and right-hand limits of f exist. Let x be a point at which f is discontinuous, and define L and R to be the left and right limits of f at x, respectively.

Notice that $f(x)$ must be greater than or equal to L; we saw in the proof from exercise 3 that the left-hand limit is the supremum of $f(\{t \in \mathbb{R} \mid t < x\})$, so if $f(x)$ were less than L then there would be points to the left of x that take on values greater than $f(x)$. Similarly, $f(x)$ must be less than or equal to R. And $f(x)$ can’t equal both L and R; otherwise, x is not a point of discontinuity at all.

This establishes that L must in fact be strictly less than R. Thus we can choose for x a rational number $r(x)$ in the interval (L, R). We can make this choice of rational value $r(x)$ at each point of discontinuity x. Moreover if x and y are two different points of discontinuity, then $r(y) \neq r(x)$, because the left- and right-hand limits at y are either (i) both less than or equal to L, in the case where $y < x$; or (ii) both greater than or equal to R, in the case where $x < y$.

Thus we’ve constructed a one-to-one function r from the points of discontinuity of f to the rational numbers, which are a countable set. Composing this with your favorite one-to-one map from the rationals into \mathbb{N} gives an injection of the points of discontinuity into \mathbb{N}, so this set is countable. \qed