1 Homework 9

1.1 Section 2.10

Exercise 5: (a) We show both inclusions. First, pick \(g \in \ker(\rho_m) \). Then, by definition, \(g^m = e \). However, since \(g \in G \), then also \(g^{\vert G \vert} = e \). But then the order of \(g \) is a common divisor of \(m \) and \(\vert G \vert \), therefore \(g^d = e \). The other inclusion is easy, since \(d|m \) and \(g^d = e \), so \(g \in \ker(\rho_m) \).

(b) The map is injective because \(\ker(\rho_m) = \{e\} \). An injective map between two finite sets of the same size is also bijective.

(c) Let \(\phi : G \to G \) be an automorphism. Let \(a \) be the generator of \(G \). There is an \(m \) such that \(\phi(a) = a^m \) because \(G \) is cyclic. Now consider any \(g \in G \). Then \(g = a^j \) for some \(j \). It follows that \(\phi(g) = \phi(a^j) = \phi(a)^j = a^{jm} = g^m \).

Exercise 6: Let \(\alpha : G \to H \), and consider the set \(S = \{ g \in G \mid \alpha(g) = \alpha(a) \} \). Let’s show \(K \alpha \subseteq S \): \(\alpha(Ka) = \alpha(K)a = ca = a \). For the other inclusion, pick \(g \in S \). Then \(\alpha(g)\alpha(a)^{-1} = e \), therefore \(ga^{-1} \in K \) and so \(g \in Ka \).

Exercise 8: (b) Any homomorphism \(\phi \) from a cyclic group to another group is determined by the image of a generator. Let \(C_3 = \langle g \rangle \). Then \(\phi(g) \) can have order one or three. If it has order one, it’s the trivial homomorphism. If it has order 3 then \(g \) gets mapped to a 3-cycle.

(d) The elements of the Klein group \(H \) are in the kernel because \(C_3 \) has order 3 and they have order 2. Also, the Klein group is a normal subgroup of \(A_4 \) because conjugation preserves the cycle decomposition of a permutation. Therefore there is a bijection between the homomorphisms \(A_4 \to C_3 \) and the homomorphisms \(A_4/H \to C_3 \). However, \(\vert A_4/H \vert = 3 \) so as a group it’s isomorphic to \(C_3 \). This allows us to describe the homomorphisms from \(A_4 \) to \(C_3 \) as follows: the Klein group gets always mapped to the identity, and the cycle (123) can get mapped to either the identity or one of the two generators of \(C_3 \). The other elements of \(A_4 \) can be expressed as a combination of the above, so one extends by linearity. There are therefore 3 homomorphisms in total.

Exercise 18: \(K_1 \triangleleft G \): \((h,k)K_1(h,k)^{-1} = (h,k)\{(e,k_1)k_1 \in K\}h^{-1},k^{-1} = \{(hh^{-1},kk_1^{-1})k_1 \in K\} = K_1 \).

\(G/K_1 \cong H \): we explicitly built an isomorphism. Consider \(\phi : G \to H \) given by \(\phi(h,k) = h \). Since \(K_1 = \ker(\phi) \) we get an induced map \(\psi : G/K_1 \to H \) defined by \(\phi((h,k)K_1) = h \). Now, \(\psi \) is surjective because \(\phi \) is, and is injective because we took the quotient by the kernel.

Exercise 34: If \(G \) is non abelian, one immediately concludes from theorem 5. If \(G \) is abelian, then \(\phi(g) = g^{-1} \) gives an automorphism.