PRACTICE MIDTERM 1

Instructor: Ila Varma
Math 100A, Lecture B Fall 2018

(1) If \(p \neq 2 \) is a prime number, show that \(p \equiv 1 \) or \(3 \) mod 4.

(2) For an element \(a \) in \(\mathbb{Z}_n \), can there both exist \(a^{-1} \) in \(\mathbb{Z}_n \) and \(c \) in \(\mathbb{Z}_n \) such that \(ac = 0 \)? Why or why not?

(3) For any integer \(a \), prove that 3 divides \(a \) if and only if 3 divides the sum of the digits of \(a \).

(4) Factor \((12345)(67)(1357)(163)\) into disjoint cycles.

(5) Using cycle notation, list all elements \(\sigma \in S_4 \) such that \(\sigma^{-1} = \sigma \).

(6a) Give an example of a group that is not finite.

(6b) Give an example of a group of order at least 4 that is finite. Compute the orders of 4 distinct elements.

(7) If \(G \) is a group under the operation \(\ast \), define the operation \(\star \) on \(G \) by \(g \ast h = g^{-1} \ast h^{-1} \). Is \(G \) a group under \(\star \)? If so, prove it. If not, describe why it fails.

(8) Prove that if \(H \) is a subgroup of \(G \), and \(K \) is a subgroup of \(H \), then \(H \) is a subgroup of \(G \).

(9a) Describe all subgroups of \(S_4 \).

(9b) Which subgroups of \(S_4 \) are conjugate to one another? Which subgroups of \(S_4 \) are conjugate to themselves? Which are abelian?