(1a) Only assuming the axioms and basic definitions, prove that \(a \mid b \) and \(a \mid c \) implies \(a \mid b + c \) for all integers \(a, b, c \in \mathbb{Z} \). Justify every step.

(1b) Write out all axioms you used in the proof of (1a) as mathematical statements.

(2) Prove that “\(P \) and \(Q \Rightarrow R \)” is equivalent to “\(P \Rightarrow R \) or \(Q \Rightarrow R \).”

(3) Prove that for all positive integers \(n \), \(3 \mid 4^n + 5 \).

(4) Let \(A, B, C \) be sets. Prove that \((A \cap C) \setminus B = (A \setminus B) \cup C \).

(5) Let \(A, B, C \) be sets. Prove that \((A \setminus B) \cap C = \emptyset \) iff \(A \cap C \subseteq B \).

(6) Determine whether the following is true or false. If it is true, prove it. If it is false, disprove it.

Let \(X, Y \) be sets. \(\mathcal{P}(X \cap Y) = \mathcal{P}(X) \cap \mathcal{P}(Y) \).

(7) Let \(f : \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R} \to \mathbb{R} \) be the following functions:

\[
\begin{align*}
 f(x) &= \begin{cases}
 x + 2 & \text{if } x < -1 \\
 -x & \text{if } -1 \leq x \leq 1 \\
 x - 2 & \text{if } x > 1
 \end{cases} \\
 g(x) &= \begin{cases}
 x - 2 & \text{if } x < -1 \\
 -x & \text{if } -1 \leq x \leq 1 \\
 x + 2 & \text{if } x > 1
 \end{cases}
\end{align*}
\]

Describe \(f \circ g \) and \(g \circ f \). Is \(f \) injective and/or surjective? Is \(g \) injective and/or surjective? Justify your answers with proofs.

(8) Let \(X, Y \) be sets and let \(f : X \to Y \) be a function. Recall that \(I_Y : Y \to Y \) denotes the identity function on \(Y \), sending \(y \mapsto y \). Prove that there exists a function \(g : Y \to X \) such that \(f \circ g = I_Y \) iff \(f \) is surjective.