Write your **Name, PID, and Discussion Section**, on the cover of your bluebook.

• No calculators or other electronic devices are allowed during this exam.
• You may use one page of notes front and back, but no books or other materials.
• Write your solutions in your bluebook clearly and in order.
• Follow any instructions written on the board.
• Show all of your work. No credit will be given for unsupported answers.

(0) Carefully **read** and **follow** the above instructions.

(1) Find the set of values (using interval notation) that satisfies, \(|x - 6| < 1 \).

(2) Give an equation that represents all points, \((x,y)\), that are a distance of 3 from the point \((2,-1)\).

(3) Consider \(f(x) = -x^2 + 2x - 1 \). What is the maximum possible value of \(f(x) \)?

(4) Evaluate \(3^\log_3(9) \).

(5) Solve \(\ln(x) - \ln(x^2) = 2 \).

(6) Find \(0 \leq \theta \leq \pi \) such that \(\cos(\theta) = -\sin(\theta) \).

(7) Let \(\tan(\theta) = 2 \) for \(0 \leq \theta \leq \frac{\pi}{2} \). Find:

 (a) \(\cos(\theta) \)

 (b) \(\sin(\theta) \)

(8) (see triangle below) If \(\sin(u) = \frac{1}{2} \) and \(c = 3 \), find \(b \).

(9) Evaluate the following:

 (a) \(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) \)

 (b) \(\sin^{-1}\left(\sin\left(\frac{4\pi}{3}\right)\right) \)

(10) \(A \cos(ax + b) + B \) has amplitude=3, period=2, and range=[-2,4]. Find \(A > 0 \), \(a > 0 \), and \(B \) that satisfy these properties.