0.2 Algebra

\[a(x+y) = ax + ay \]

\[B^0 \quad (a+b)(a+b) = a(a+b) + b(a+b) \]
\[= a^2 + ab + ba + b^2 \]
\[= a^2 + 2ab + b^2 \]

\[\text{ab} = \text{ba} \]

\[-(\text{a}) = \text{a}, \quad (\text{a})(\text{-b}) = \text{ab}, \quad -\text{a} = (\text{-1})\cdot\text{a} \]

\[\text{Proofs.} \quad \frac{a}{b} = a \cdot \frac{1}{b} \]
\[\frac{a}{b} \cdot \frac{c}{a} = \frac{ac}{bd} \quad \frac{a}{b} \cdot \frac{c}{a} = \frac{bc}{ab} = \frac{c}{b} \]
\[\frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad + cb}{bd} \]
\[\frac{a}{b} = \frac{a}{b} \cdot \frac{d}{d} = \frac{ad}{bc} \]

\[\text{Ex:} \quad \frac{a}{b} = ? \]

\[\frac{a}{b} = \frac{-a}{-b} = -\frac{a}{b} \quad \frac{-a}{-b} = \frac{(\text{-1})a}{(\text{-1})b} = \frac{a}{b} \]
0.3 Inequalities, Intervals and absolute value

- **Real line** (like a ruler)

 - A point on real line represents a real number.
 - Every real number can be found on real line.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>10/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Negative**
 - Left of zero of real line

- **Positive**
 - Right of zero on the real line

Positive and negative numbers

- $\Theta + \Theta = \Theta$
- $\Theta - \Theta = \Theta$
- $\Theta \cdot \Theta = \Theta$

(Additive inverse)

- $\Theta \cdot \Theta = \Theta$
- $\Theta - \Theta = \Theta$

(Additive inverse)

Inequality

- $a < b$ means a is shorter than b
- $b > a$ means b is taller than a

- $a < 5$
- $b > a$ means b is more than $a
We say \(a \) is less than \(b \) if \(a \) is smaller, denote as \(a < b \).

We say \(b \) is greater than \(a \) if \(b \) is bigger, denote as \(b > a \).

\[a = b \text{ or } b > a \]

\[a \quad \text{left of } \quad b \quad \text{right of } \quad a \]

\[a < b \quad b > a \]

Properties:

- **Transitivity:** if \(a < b \), \(b < c \) then \(a < c \)

 Similarly: \(a > b \), \(b > c \) then \(a > c \)

- **Addition of inequalities:** if \(a < b \) and \(c < d \) then \(a + c < b + d \)

 Similarly \(a > b \) and \(c < d \) then \(a + c > b + d \)

- **Multiplication:** if \(a < b \), then \(c > 0 \), \(ac < bc \)
 \(c < 0 \), \(ac > bc \) (Ex: \(1 < 2 \Rightarrow 1 \cdot (-2) > 2 \cdot (-2) \))

- **Additive inverse:** if \(a < b \), \(-a > -b \)

 Similarly \(a > b \), \(-a < -b \)

- **Multiplicative inverse:** suppose \(a < b \), if \(a, b \) both positive, \(\frac{1}{a} > \frac{1}{b} \)

 If \(a < 0 < b \), \(-\frac{a}{b} < -\frac{1}{a} \)
\[x + 1 < 2 \]
\[x + 1 - 1 < 2 - 1 \implies x < 1 \]

\[x - 8 \over x - 4 \cdot (x - 4) < 3 \cdot (x - 4) \]
\[\text{Thus, split the case:} \]
\[\begin{align*}
&\text{if } x > 4 \implies x > x - 4 \implies \\
&\quad \text{then} \\
&\quad \frac{x - 8}{x - 4} < 3 \implies \\
&\quad x - 8 < 3x - 12 \\
&\quad x - 8 - x + 12 < 3x - 12 - x + 12 \implies 4 < 2x \implies x > 2 \end{align*} \]

When \(x > 4 \), the inequality is true if \(x > 2 \), thus \(x > 4 \) is the case.

\[\begin{align*}
&\text{if } x < 4 \implies x < x - 4 \implies \\
&\quad \text{then} \\
&\quad x - 8 > 3x - 12 \implies x < 2 \\
&\text{Similarly, } x < 4 \text{ is the case.} \\
&\text{Combine the inequalities is true if } x > 4 \text{ or } x < 2 \\
\end{align*} \]

\underline{Intervals (Another representation of inequality)}

Set: a collection of objects (numbers)

\[\{0, 1\}, \{x : x > 2\}, \{y : y < 0\} \]

Interval: a set of real numbers contains all numbers between 2 numbers, may or may not contain these 2 numbers.
open interval \((a, b) = \{ x : a < x < b \}\)

closed \([a, b] = \{ x : a \leq x \leq b \}\)

half open \((a, b) = \{ x : a < x \leq b \}\)

half open \([a, b) = \{ x : a \leq x < b \}\)

Ex. \((3, 7]\), 3.14 is in \((3, 7]\)

3 is not in \([3, 7]\)

2.9 is not in \((3, 7]\)

7 is in \((3, 7]\)

More Intervals:

\((a, \infty) = \{ x : x > a \}\)

\([a, \infty) = \{ x : x \geq a \}\)

\((\infty, a) = \{ x : x < a \}\)

\((\infty, a] = \{ x : x \leq a \}\)

Ex. \((\infty, 0] : \quad 0 \text{ is in } (\infty, 0]\)

\(-10000\) is in \((\infty, 0]\)

Any negative number is in \((\infty, 0]\)

No positive number is in \((\infty, 0]\)

Union of Intervals (express it as simple as possible)

Ex. \((1, 5) \cup (3, 7] = (1, 7]\)

\(\frac{1}{5} 3 5 7\)
Absolute Value (distance from 0)

The absolute value of a number \(b \) is:

\[
|b| = \begin{cases}
 b & \text{if } b \geq 0 \\
 -b & \text{if } b < 0
\end{cases}
\]

Write \(|x| < 2\) into an interval. W/O. If

- \(x \geq 0 \), then \(|x| = x\) so \(x < 2 \)
- \(x < 0 \), then \(|x| = -x\) so \(-x < 2 \Rightarrow x > -2 \)

Combine \([0, 2) \cup (-2, 0) \)

\(-2 < x < 2\)

Example write \(|x - 5| < 1\) into an interval. W/O abs.

\(-1 < x - 5 < 1\)

\(-1 + 5 < x - 5 + 5 < 1 + 5 \Rightarrow 4 < x < 6 \Rightarrow (4, 6)\)

Example write \(|x - 5| > 1\) into an interval. W/O abs.

- If \(x - 5 \geq 1 \)
 \(x - 5 > 1 \Rightarrow x > 6 \)
- If \(x - 5 < 0 \)
 \(x - 5 < -1 \Rightarrow x < 4 \)

\((-\infty, 4) \cup (6, \infty)\)
Functions

input \[\rightarrow \] function \[\rightarrow \] output

bread \[\rightarrow \] toaster \[\rightarrow \] toasted bread

domain: set of input (specify)
range: set of output

Functions defined by formulas

Example: \(f(x) = x^2 \)

the function, input variable (real number)
can be given as:

\[f(3) = 3^2 = 9 \]

Substitute \(x \) to 3

\[f(1+\alpha) = (1+\alpha)^2 = \alpha^2 + 2\alpha + 1 \]

\[f\left(\frac{x+5}{2}\right) = \left(\frac{x+5}{2}\right)^2 = \frac{x^2+10x+25}{4} \]

Example:

\[f(x) = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases} \]

\[f(1+5) = \begin{cases} x+5 & \text{if } x+5 \geq 0 \\ -(x+5) & \text{if } x+5 < 0 \end{cases} \]

\[f(-1) = 1 \quad f(1) = 1 \]
Input Variable can be anything

\[
\begin{align*}
\text{f(x)} &= x^2 \\
\text{f(t)} &= t^2 \\
\text{f(\square)} &= \square^2
\end{align*}
\]

does not matter what letter you are using.

things matter is that you know it's an input variable

can be changed, substituted by other letter or number

Range and Domain

Domain: where function defined,
set of input real numbers
* if not specified, the set of all real number with
for which the formula makes sense. (valid)

Ex. \(f(x) = x^2 \)

Domain: \([1, 2]\)

\(f(0) \) is not defined since \(0 \) is not in \([1, 2]\)

Ex. \(f(x) = \frac{1}{x} \)

What is the domain \((x \neq 0)\)

\((-\infty, 0) \cup (0, +\infty)\)

Range: set of output, all \(y \) s.t. \(f(x) = y \) for at least one \(x \) in range.

Ex. \(f(x) = x \)

Domain: \([1, 2]\)

Range is \([1, 2]\)

Ex. \(f(x) = x^2 \)

Domain: \([-1, 1]\)

Range is \([0, 1]\)
* Important about functions:

For every input, there is only one output.

However, one output may have more than one input.

Ex: \(f(x) = x^2 \) \(f(-1) = 1 \) \(f(1) = 1 \)

Function as a table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
</tr>
<tr>
<td>13</td>
<td>169</td>
</tr>
</tbody>
</table>

Domain: \(\{2, 3, 7, 13\} \)

Range: \(\{4, 9, 49, 169\} \)

Equality of functions:

Two functions are equal if and only if they have the same domain and the same value at every number in that domain.

For: \(f(x) = x^2 \) \(g(x) = x^2 \)

\(f(3) = 9 \) \(g(3) = 9 \)

\(f(1) = 1 \) \(g(1) = 1 \)

\(f(15) = 225 \) \(g(15) = 225 \)
§ 1.2 Coordinate Plane & Graph

Chess Board

```
A B C
1 2 3
```

Coordinate plane (Cartesian plane)

- Vertical axis (up pos)
- Horizontal axis (right pos)

Intersection is the origin

Elements of Coordinate plane

- **Horizontal axis** (real line) right pos. with 0,1
- **Vertical axis** (real line) up pos. with 0,1
 - which S has same zero
- **Point of Origin** = Intersection of (H/V axis)

Coordinate and point on plane

- Distance to the Horizontal axis
- Distance to the Vertical axis

```
(1,2) 3 2 1
-2 -1 0 1 2 3
```

Graph of function

Def. The graph of function is the set of points of the form (x, f(x))

Ex.

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
Ex: \(f(x) = |x| \) (Domain is real line)

- cannot show the whole graph but a part of them

Ex (How to graph \(f(x) \))

\[f(x) = x^2 \] Domain \([0, 2]\)

1. Pick few points, find them on the plane
2. Connect them smoothly

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>1/4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3/2</td>
<td>9/4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

What can you tell from graph

1. Find the values of a function from its graph

Ex: \(f(\frac{3}{2}) = \frac{3}{2} \)

Evaluate \(f(\frac{3}{2}) \)

- find \(x = \frac{3}{2} \) on horizontal axis
- draw the vertical line pass the pt.
- find the intersection with the graph
- draw the horizontal line pass the intersection
- the horizontal exceeds on vertical axis

\[f(\frac{3}{2}) \]

2. Determine Domain and Range

Assume your fun is given by graph.

\(a \) is in the Domain if \(x = b \) intersects with the graph of the fun.

\(b \) is in the Range if \(y = a \) intersects with the fun.
By 4

\[y = x^2 \]

Is 1.5 m range? Yes
Is 5 m range? No
Range is? [0, 4]

3. Determine if the graph is a function
Vertical line test
if \(x = 5 \) only intersects with it at most once

Yes
No.
Section 1.3: Function Transformations and Its Graphs

Vertical transformation: Shifting, Stretching, Flipping
* Shifting: graph for \(y = f(x) \) \(\Rightarrow \) what is the graph of \(y = f(x) + k \)

- \(f(x) = x^2 \), Domain \([1, 1]\) \(\Rightarrow \) \(f(x+1) = (x+1)^2 \)
- \(f(x) = x^2 - 1 \), Domain \([-1, 1]\) \(\Rightarrow \) \(f(x-1) = (x-1)^2 \)

The graph \(y = f(x) + a \) is obtained by shifting \(y = f(x) \) up \(a \) units
- \(y = f(x) - e \) is obtained by shifting \(y = f(x) \) down \(e \) units

* Stretching given for \(f(x) = f(x) \) \(\Rightarrow \) what is the graph of \(y = cf(x) \) \((c > 0) \)

- \(f(x) = x^2 \), Domain \([1, 1]\) \(\Rightarrow \) \(g(x) = 2x^2 \), Domain \([-1, 1]\)
- \(f(x) = \frac{1}{2} x^2 \)

The graph of \(y = cf(x) \) is obtained by vertically stretching \(f \) by a factor of \(c \).
The graph of $g(x) = -f(x)$ is obtained by flipping f across the horizontal axis.