§ 2.1 Linear functions

Graphical: straight lines (except vertical line)

Formulas:
\[y = \frac{y_2 - y_1}{x_2 - x_1} \]
\[y = \frac{y_4 - y_3}{x_4 - x_3} \]

Slope:
\[\text{slope} = \frac{\text{rate of change}}{\text{rate of change}} \]

Definition:
\[\text{for any } x_1, x_2, x_3, x_4, \text{ where } x_1 \neq x_2, x_3 \neq x_4 \]

Definition:
\[\text{for any two pts on a line, slope of the line is:} \]
\[\frac{y_2 - y_1}{x_2 - x_1} \]

The equation of the line

Point + slope: given \((x_1, y_1)\) on the line, \(m\) slope, \(m\)

\[\frac{y - y_1}{x - x_1} = m \Rightarrow y - y_1 = m(x - x_1) \]

Example:
Slope \(\frac{1}{4}\), contains \((4,1)\)

\[y - 1 = \frac{1}{4}(x - 4) = \frac{1}{4}x - 1 \]
\[\Rightarrow y = \frac{1}{4}x \]
* slope + y-intercept: \(m, b \)
\[
y = mx + b
\]
be the line passes \((0, b)\)
points on y-axis

* 2 points : \((x_1, y_1), (x_2, y_2)\) (best way to sketch a line)

\[
slope = \frac{y_2 - y_1}{x_2 - x_1}
\]

Equation: \(y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) \)

Ex: points \((2, 4), (5, 1)\)

\[
slope = \frac{1 - 4}{5 - 3} = -1
\]

\[
y - 4 = -1(x - 2) = -x + 2 \Rightarrow y = -x + 6
\]

Ex: Find the function which takes temperature in °C as input and °F as output. Given \(f(0) = 32 \) \(, f(100) = 212 \)

\[
f(0) = 32 \Rightarrow b = 32 \Rightarrow f(x) = mx + 32
\]

put \(f(100) = 212 \Rightarrow m\cdot 100 + 32 = 212 \Rightarrow m = \frac{9}{5}
\]

\[
f(x) = \frac{9}{5}x + 32
\]

Constant function: \(f(x) = b \), \(b \) is constant, \(m = 0 \) for horizontal
Parallel

Definition

Two lines are parallel if and only if they have the **same slope**.

Graphical

Two lines never intersect.

Exercise

Find the equation of the line that contains the point (1,1) and is parallel to the line containing (2,2) and (4,1).

Assume the slope of the line is m.

Given $y-1 = m(x-1)$, to find m, we know m is same as the slope of the line containing (2,2) and (4,1), so the slope of

Thus \[m = \frac{1-2}{4-2} = -\frac{1}{2}. \]

Thus the equation is

\[y-1 = -\frac{1}{2}(x-1) \Rightarrow y = -\frac{1}{2}x + \frac{3}{2}. \]

Intersection of 2 lines

Diagram

- Intersect: a point, 2 lines pass it.
- $y = x$
- $y = x+2$

Thus $x_0 = y_0$ and $-x_0 + 2 = y_0$

\[\Rightarrow x_0 = y_0 = -x_0 + 2 \Rightarrow x_0 = 1 \quad y_0 = 1 \]

Intersection: (1,1)

Exercise

Find the intersection of $y = M_1x + b_1$, $y = M_2x + b_2$.

$m_1x + b_1 = M_2x + b_2$

\[\Rightarrow (M_1 - M_2)x = b_2 - b_1 \]

If $M_1 = M_2$ and $b_2 \neq b_1$, **No solution** (parallel).

If $M_1 = M_2$ and $b_2 = b_1$, **Same line**.

If $M_1 \neq M_2$,

\[x = \frac{b_2 - b_1}{M_1 - M_2}, \quad y = \frac{M_1b_2 - M_2b_1}{M_1 - M_2} \]

Intersection: \(\left(\frac{b_2 - b_1}{M_1 - M_2}, \frac{M_1b_2 - M_2b_1}{M_1 - M_2} \right) \)
Two lines are perpendicular if and only if the product of their slopes is -1.

Ex: Show \(y = x \) is perpendicular to \(y = -x + 2 \)

Slope of \(y = x \) is 1. Slope of \(y = -x + 2 \) is -1.

\[1 \cdot (-1) = -1, \] thus by def. they are perpendicular.

Ex: Find \(t \), s.t. the line containing \((1, -2)\) and \((3, 3)\) is perpendicular to the line containing \((9, -1), \,(t, 1)\).

Slope 1: \(\frac{3 - (-2)}{3 - 1} = \frac{5}{2} \)
Slope 2: \(\frac{t - (-1)}{t - 9} = \frac{2}{t - 9} \)

\[\frac{5}{2} \cdot \frac{2}{t - 9} = -1 \Rightarrow \frac{5}{t - 9} = -1 \Rightarrow 5 = -t + 9 \Rightarrow t = 4 \]

Equation and function (set of points)

- Equation \(xy = k \) can describe a curve in coordinate plane, the curve can be function or not function. \((x = 4)\)
- Function \(y = f(x) \) \(\iff \) graph of \(f \) is vertical line test
Completing the square

\[(x+a)^2 = x^2 + 2ax + a^2\]

By

\[x^2 + 6x + 4 = (x + 3)^2 - 9 + 4\]

\[= (x + 3)^2 - 5\]

Formula

\[x^2 + bx = (x + \frac{b}{2})^2 - \frac{b^2}{4}\]

\[b\] can be negative

Ex

\[x^2 - 10x\]

\[b = -10, \quad \frac{b}{2} = -5, \quad \frac{b^2}{4} = 25\]

General formula

\[a(x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a}\]

Proof

\[a(x + \frac{b}{2a})^2 + c = a(x + \frac{b}{2a})^2 - \frac{b^2}{4a} + c = a(x + \frac{b}{2a})^2 - \frac{b^2}{4a} + c = a(x + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a}\]

Solve quadratic equation

2. Solve \(x^2 + 6x - 4 = 0\)

1. Complete the square:

\[(x + 3)^2 - 9 + 4 = 0\]

2. \((x + 3)^2 = 13\)

3. \(x + 3 = \pm \sqrt{13} \Rightarrow x = -3 \pm \sqrt{13}\)

Solve \(ax^2 + 5x + c = 0\)

\[a(x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2} \Rightarrow (x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2}\]

Take root? discuss!

- If \(b^2 - 4ac > 0\) then \(x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a} \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)
- If \(b^2 - 4ac = 0\) then \(x = -\frac{b}{2a}\)
- If \(b^2 - 4ac < 0\) No solution!
Find \(s \) and \(t \) such that \(s + t = 8 \) \(s - t = 12 \)

\[
\begin{align*}
S + t &= 8 \quad \Rightarrow \quad S = 8 - t \\
S - t &= 12 \quad \Rightarrow \quad (8 - t) + t = 12 \quad \Rightarrow \quad \frac{t^2 - 8 + 12}{a} = 0 \\
&= \frac{4}{a} \\
b^2 - 4ac &= 8^2 - 4 \cdot 1 \cdot 12 = 16 > 0
\end{align*}
\]

Thus \(t = \frac{-8 \pm \sqrt{16}}{2(1)} = 2 \) or \(6 \)

\[
\begin{align*}
\text{If } t &= 2 \quad \Rightarrow \quad S = 6 \\
\text{If } t &= 6 \quad \Rightarrow \quad S = 2
\end{align*}
\]

Quadratic functions and parabola

Quadratic function \(f(x) = ax^2 + bx + c \)

\[
\begin{align*}
f(x) &= x^2, \quad a \neq 1, \quad b = 0, \quad c = 0
\end{align*}
\]

The graph of quadratic function is parabola

Vertex of parabola is the pt where the line of symmetry intersects the parabola

\[
y = x^2 \quad \text{line of symmetry } x = 0 \\
\text{Vertex } (0, 0)
\]

\[
y = (x + h)^2 = f(x) \quad \text{if } f(x) = x^2 \quad f(x) = g(x + h)
\]

\[
y = (x - h)^2 = f(x) \quad \text{if } f(x) = x^2 \quad f(x) = g(x - h)
\]

Line of symmetry \(x = -1 \)

Line of symmetry \(x = 1 \)

Line of symmetry \(x = 1 \)
Quadratic function, another

\[
\begin{align*}
\text{for } ax^2 + bx + c & \\
&= a(x + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a} \\
&= a(x - h)^2 + k \\
h &= -\frac{b}{2a} \quad k &= -\frac{b^2 - 4ac}{4a}
\end{align*}
\]

Notice: for any real number \(z \), \(z^2 \geq 0 \)

So: \((x-h)^2 \geq 0 \)

If \(a > 0 \), \(a(x-h)^2 + k > 0 \) \(\Rightarrow \) \(a(x-h)^2 + k \geq k \)

If \(a < 0 \), \(a(x-h)^2 \leq 0 \) \(\Rightarrow \) \(a(x-h)^2 + k \leq k \)

Suppose \(f \) is a quadratic function, with form:

\[
f(x) = a(x-h)^2 + k
\]

* \(h \) line of symmetry: \(x = h \)

* Vertex: \((h, k)\) or \((h, f(h))\)

* If \(a > 0 \) then \(f \) has min value \(k \), when \(x = h \)

* If \(a < 0 \) then \(f \) has max value \(k \), when \(x = h \)

Circle

Put a circle into the coordinate plane

What is the equation of the circle?

Distance (Pythagorean Thm.)

\[
\begin{align*}
\sqrt{3^2 + 4^2} &= 5 \\
\end{align*}
\]

distance on hor. line

distance on ver. line
Max General

\[r^2 = 3^2 = 5 = \sqrt{(5-1)^2 + (4-1)^2} < \text{distance between (5,1) \& (1,4)} \]

Distance \((x_1, y_1) \& (x_2, y_2)\) is \(\frac{\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}}{\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}}\)

Circle

Put center at (2,0)

All pts on the circle satisfies distance between pt on circle and center is a constant r

Distance between pt on circle and center is a constant r

Equation of a circle:

The circle with center \((h,k)\) and radius \(r\) has equation:

\((x-h)^2 + (y-k)^2 = r^2\)

Find the radius and center of the circle in the coordinate plane:

\(x^2 + 4x + y^2 - 6y = 12\)

\[(x+2)^2 - 4 + (y-3)^2 - 9 = 12 \]

\[(x+2)^2 + (y-3)^2 = 25 \]

Center \((-2, 3)\)

Radius \(\sqrt{25} = 5\)