If a divides b and b divides c, then a divides c.

Assume a|b and b|c. Then by definition of divides there are integers \(k_1, k_2 \) such that \(ak_1 = b \) and \(bk_2 = c \).

Then \(c = bk_2 = ak_1k_2 \). Since the product of two integers is also an integer, \(ak_1k_2 \) by definition.

4.2 By contradiction, \(n^2 \text{ odd} \implies n \text{ odd} \)

Assume for contradiction that there exists an \(n \) such that \(n^2 \) is odd and \(n \) is not odd (so even). Since \(n \) is even, there is an integer \(k \) such that \(n = 2k \).

Then \(n^2 = (2k)^2 = 4k^2 = 2(2k^2) \) and so \(n^2 \) is even, since \(2k^2 \) is an integer.

So \(n^2 \) is even and \(n^2 \) is odd, a contradiction. Thus, the original statement assumption must be false; there is no \(n \) with \(n^2 \) odd and \(n \) even. Thus, \(n^2 \text{ odd} \implies n \text{ odd} \).

5.5 If \(a, b \in \mathbb{R} \) and \(n \in \mathbb{Z} \), \(n \geq 0 \), \(\frac{n}{i=0} \frac{1}{(at+b)} = \frac{1}{2} \frac{(n+1)(2a+nb)}{i=0} \)

The proof will be by induction.

Base case: if \(n = 0 \) then \(\frac{0}{i=0} \frac{1}{(at+b)} = at = a \) and \(\frac{1}{2} \frac{(n+1)(2a+nb)}{i=0} = \frac{1}{2} (1)(2a) = a \).

So \(\frac{0}{i=0} \frac{1}{(at+b)} = \frac{1}{2} \frac{(n+1)(2a+nb)}{i=0} \) as required.

Inductive step: Suppose \(\frac{k}{i=0} \frac{1}{(at+b)} = \frac{1}{2} \frac{(k+1)(2a+kb)}{i=0} \) for some integer \(k \).

I will show that \(\frac{k+1}{i=0} \frac{1}{(at+b)} = \frac{1}{2} \frac{(k+2)(2a+(k+1)b)}{i=0} \).

\[
\begin{align*}
\frac{k+1}{i=0} \frac{1}{(at+b)} &= \frac{k}{i=0} \frac{1}{(at+b)} + \frac{a+(k+1)b}{i=0} \\
&= \frac{1}{2} \frac{(k+1)(2a+kb)}{i=0} + a+(k+1)b \quad \text{(by assumption)} \\
&= \frac{1}{2} \left[(k+1)(2a+kb) + 2a + 2(k+1)b \right] \\
&= \frac{1}{2} \left[2a(k+1) + kb(k+1) + 2a + 2(k+1)b \right] \\
&= \frac{1}{2} \left[2a(k+1) + 2a + k(k+1)(k+2) \right] \\
&= \frac{1}{2} \frac{(k+2)(2a+(k+1)b)}{i=0} \quad \text{as desired.}
\end{align*}
\]

Thus, by induction, \(\frac{n}{i=0} \frac{1}{(at+b)} = \frac{1}{2} \frac{(n+1)(2a+nb)}{i=0} \) for all non-negative integers.