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Introduction

Empirical Measure and Bootstrap Measure

Empirical cumulative distribution function:

Fn(x) =
1

n

n∑
i=1

χ[Xi ,+∞)(x) =
1

n

n∑
i=1

I (Xi ≤ x)

Empirical measure:

Pn(ω) =
1

n

n∑
i=1

δXi (ω), ω ∈ (Ω∞,P∞,P∞)

Bootstrap measure:

P∗n(ω, σ) =
1

n

n∑
i=1

δX∗i (ω,σ) =
1

n

n∑
i=1

δXσ(ω)

σ ∼ Multinomial(n) with uniform pi
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Empirical Process on R Glivenko-Cantelli Theorem

Glivenko-Cantelli Theorem on R

Theorem (Glivenko-Cantelli)

‖Fn − F‖∞
a.s.−−→ 0.

Proof by partition, pick bigger jumps of F (x) as cut points.

Marquis Hou (UCSD) Learning Proofs 5 / 16



Empirical Process on R Càdlàg space and Donsker Theorem

Càdlàg space and Donsker Theorem

Càdlàg space D[−∞,+∞], right continuous functions with left limits.
Skorokhod metric:

σ(f , g) = inf
λ∈Λ

max ‖λ− I‖, ‖f − g ◦ λ‖

Λ is the set of all strictly increasing continuous bijection of [−∞,+∞].

Theorem (Donsker)

In Skorokhod topology of Càdlàg space D[−∞,+∞],

√
n(Fn − F )

L−→ B ◦ F

where B is a Brownian bridge.
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Empirical Process on R Weak Convergence in l∞(R)

Weak Convergence in l∞(R)

Fact:

Fn and Gn =
√

n(Fn − F ) are not Borel measurable
(Pn → B(l∞(R))).

l∞(R) is neither compact nor separable.

Thus, Dudley and Hoffman-Jørgensen developed the extended theory of
weak convergence.

Definition (Outer expectation)

E∗T (P) = inf{EU : U ≥ T ,Uextended r.v and EU =
∫

UdP exists}

Definition (Weak Convergence)

Gn → G in l∞[0, 1]. For all bounded continuous h : l∞[0, 1]→ R,

E∗h(Gn) =→ Eh(G )
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Empirical Process on R Weak Convergence in l∞(R)

Second Donsker Theorem

Theorem (Donsker)

If F is continuous, then Gn converges weakly in l∞(R) to B ◦ F , a tight
process concentrating on a complete separable subspace of l∞(R).
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Empirical Process in General Sample Space P-Glivenko-Cantelli and P-Donsker

Empirical Process in General Sample Space

No more c.d.f. Fn(.) and F (.), all in terms of measure Pn and P

For a measurable function f : Ω→ R,

Pnf =
1

n

∑
i=1

nf (Xi ), Pf =

∫
fdP

No proper extension to Càdlàg and Skorokhod,
but l∞(F), where F is a class of functions.
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Empirical Process in General Sample Space P-Glivenko-Cantelli and P-Donsker

P-Glivenko-Cantelli and P-Donsker

Suppose F is a class of measurable functions.

Definition (P-Glivenko-Cantelli)

‖Pnf − Pf ‖F = sup
f ∈F
|Pnf − Pf | a.s.−−→ 0.

Definition (P-Donsker)

Gn =
√

n(Pn − P) converges in law to a tight limit process GP in l∞(F),
also known as a P-Brownian bridge.

Marquis Hou (UCSD) Learning Proofs 10 / 16



Empirical Process in General Sample Space Measurability and P-Donsker Class

In Giné and Zinn (1984), there is a long list of criteria for proper class F .
Usually, we need additional measurability for uncountable F :

LSM

SM

LDM

DM

NLSM

NLDM
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Empirical Bootstrap Weak Convergence with Donsker Class

Empirical Bootstrap

In Giné and Zinn (1990), a general convergence theorem for empirical
Bootstrap is established. We need to assume certain measurability
condition F ∈ M(P) NLDM(P) for F and NLSM(P) for F2 and F ′2.

Theorem (Giné and Zinn 1990)

Let F ∈ M(P), then the following are equivalent:

(a) The envelope F for F is in L2(P) and F is P-Donsker with
limit GP .

(b) There exists a centered tight Gaussian process G on F such
that

√
n(P∗n − Pn)→ G weakly in l∞(F).

If either one holds, then G = GP .
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Empirical Bootstrap Weak Convergence with Donsker Class

Convergence via Bounded Lipschitz Metric

The equivalence of weak convergence in l∞(F):

L{Gn} L{G} ⇔ sup
h∈BL1(l∞(F))

|E∗h(Gn)− Eh(G )| → 0

where BL1 is the space of functions whose Lipschitz norm is bounded by 1.

Theorem

For every P-Donsker class F with envelope function F , i.e.
|f (ω)| ≤ F (ω) <∞ for all ω ∈ Ω and f ∈ F .

sup
h∈BL1(l∞(F))

|EMh(G ∗n )− Eh(GP)| P−→ 0

Moreover, G ∗n is asymptotically measurable. If P∗F 2 <∞, then the
convergence is outer almost surely as well.
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Empirical Bootstrap Functional δ-Method

Theorem (Delta method for Bootstrap)

Let D be a normed space and let φ : Dφ ⊂ D→ Rk be Hadamard

differentiable at θ tangentially to a subspace D0. Let θ̂n and θ̂∗ be maps
with values in Dφ such that
√

n(θ̂n − θ)
L−→ T , tight in D0.

suph∈BL1(D) |EMh(
√

n(θ̂∗n − θ̂))− Eh(T )| P−→ 0.

Then suph∈BL1(D) |EMh(
√

n(φ(θ̂∗n)− φ(θ̂)))− Eh(φ′θ(T ))| P−→ 0.
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Empirical Bootstrap Functional δ-Method

An Application

Corollary (Empirical distribution function)

The class F = {ft : ft = 1(−∞,t]} is Donsker, so the empirical distribution
function Fn satisfies the condition for the preceding theorem. Thus,
conditionally on sample,

√
n(φ(F ∗n )− φ(Fn)) converges in distribution to

the same limit as
√

n(φ(Fn)− φ(F )), for every Hadamard-differentiable
function φ, e.g. quantiles and trimmed-means.
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Empirical Bootstrap Functional δ-Method

The End
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