Concepts

- **Least Square Solution**
 For linear model
 \[Y = Xb + \epsilon \]
 where \(Y \in \mathbb{R}^n \), \(b \in \mathbb{R}^p \), \(X \in \mathbb{R}^{n \times p} \), \(\epsilon \sim \mathcal{N}(0, \sigma^2 I_n) \)
 Suppose \(\text{rank}(X) = p \), the least square estimator is given by
 \[\hat{b}_{LS} = (X'X)^{-1}X'Y \]

- **Mean and Variance of a Vector**
 Let \(v \) be a \(n \)-dim random vector, \(A \) is a \(p \times n \) matrix. Then
 \[EAv = AEv, \text{Var}Av = A\text{Var}[v]A^T \]

Problems

1. Suppose \(\hat{\beta} = \phi'Y \) is an unbiased linear estimator for \(\beta \). Compute its Mean-Square Error.

2. (Shrinkage) Now consider a simple linear model \(Y_i \sim \beta_0 + \beta_1 X_i \), where \(\sum_{i=0}^n X_i = 0 \) and \(\sum_{i=0}^n X_i^2 = 1 \).
 (a) Derive the LS estimator \(\hat{\beta}_{1LS} \).

 (b) Let \(\hat{\beta}_1^\lambda = \hat{\beta}_{1LS} / (1 + \lambda) \), compute its MSE.

 (c) Show that if \(\beta_1 \neq 0 \), \(\exists \lambda > 0 \), s.t. \(MSE(\hat{\beta}_1^\lambda) < MSE(\hat{\beta}_{1LS}) \)