Math 220B Preliminary Exam

Jim Agler

March 7, 2014

Instructions: Solve 4 problems.

1. \(\mathbb{D} \) denotes the unit disc centered at the origin.

2. If \(G \) is an open set in the plane, \(H(G) \) denotes the collection of analytic functions on \(G \).

3. A set \(\mathcal{F} \subseteq H(G) \) is said to be locally Lipschitz if for each \(a \in G \) there exist \(r > 0 \) and a constant \(M \) such that \(B(a;r) \subseteq G \) and \(|f(z) - f(w)| \leq M|z - w| \) for all \(z, w \in B(a;r) \).

4. \(\phi_\alpha \) denotes the Moebius function defined by \(\phi_\alpha(z) = \frac{z - \alpha}{1 - \overline{\alpha}z} \).

Problems:

1. Let \(\mathcal{F} = \{ f \in H(\mathbb{D}) \mid f\left(\frac{1}{2}\right) = 0 \text{ and } \sup_{z \in \mathbb{D}} |f(z)| \leq 1 \} \). Compute \(\sup_{f \in \mathcal{F}} |f\left(\frac{1}{2}\right)| \).

2. Let \(G \) be an open set in \(\mathbb{C} \) and let \(\mathcal{F} \subseteq H(G) \). Prove that if \(\mathcal{F} \) is locally bounded, then \(\mathcal{F} \) is locally Lipschitz.

3. Show that \(\mathcal{F} = \{ f \in H(\mathbb{D}) \mid f(0) = 1 \text{ and } \forall z \in \mathbb{D} \text{ Re } f(z) > 0 \} \) is a normal family.

4. Let \(G \) be a simply connected region in the plane and assume that \(f \) is a conformal map from \(G \) to \(\mathbb{D} \) (i.e., \(f : G \to \mathbb{D} \) is an analytic bijection). Prove that if \(g \) is any other conformal map from \(G \) to \(\mathbb{D} \) then there exist \(c, \alpha \in \mathbb{C} \) with \(|c| = 1 \) and \(\alpha \in \mathbb{D} \) such that \(g(z) = c\phi_\alpha(f(z)) \).

5. Prove that for each \(\epsilon > 0 \), \(\frac{1}{z+i} + \sin z \) has infinitely many zeros in the region \(\{ z = x + iy \mid x > 0, |y| < \epsilon \} \).