1. Let \(\{p_n\} \) be a sequence of polynomials such that \(p_n \) converges uniformly to a function \(\phi \) on \(C = \{\lambda \in \mathbb{C} \mid |\lambda| = 1\} \). Prove that there exists \(f \in H(\mathbb{D}) \) such that \(p_n \to f \) in \(H(\mathbb{D}) \).

2. Suppose that \(f \) is analytic on \(\mathbb{D} \) with \(|f(z)| \leq 1 \) for all \(z \in \mathbb{D} \). If \(f = 0 \) at the distinct points \(a_1, \ldots, a_n \in \mathbb{D} \), prove the inequality,

\[
|f(z)| \leq \prod_{j=1}^{n} \left| \frac{z - a_j}{1 - \overline{a_j} z} \right|,
\]

for all \(z \in \mathbb{D} \). If \(f \) has a double 0 at \(a_j \) for some \(j \), prove that the inequality is strict for all \(z \in \mathbb{D} \).

3. Let \(\mathcal{F} \) be the collection of analytic functions on \(\mathbb{D} \) whose power series expansion, \(\sum_{n=0}^{\infty} a_n z^n \), satisfies \(|a_n| \leq n \) for all \(n \geq 0 \). Prove that \(\mathcal{F} \) is a normal family.

4. Evaluate

\[
\prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2} \right)
\]

in the following two ways: (i) directly, and (ii) from the Weierstrass factorization of the \(\sin \) function.

5. Let \(G \) be a connected open set and let \(\{f_n\} \) be a sequence in \(H(G) \). Assume that \(\prod_{n=1}^{\infty} f_n \) converges in \(H(G) \) to a function \(f \) which is not identically 0. Show that for \(a \in G \), \(f(a) = 0 \) if and only if there exists an \(n \) such that \(f_n(a) = 0 \).