Math 120 Practice Final Exam Solutions

Jim Agler

1. Use Euler’s formula to derive the trigonometric identities

\[\cos 3\theta = \cos^3 \theta - 3 \cos \theta \sin^2 \theta \quad \text{and} \quad \sin 3\theta = 3 \cos^2 \theta \sin \theta - \sin^3 \theta. \]

Solution. Using Euler’s formula twice and the identity,

\[(z + w)^3 = z^3 + 3z^2w + 3zw^2 + w^3, \]

we have that

\[
\begin{align*}
\cos 3\theta + i \sin 3\theta &= e^{i(3\theta)} \\
&= (e^{i\theta})^3 \\
&= (\cos \theta + i \sin \theta)^3 \\
&= (\cos \theta)^3 + 3(\cos \theta)^2(i \sin \theta) + 3(\cos \theta)(i \sin \theta)^2 + (i \sin \theta)^3 \\
&= (\cos^3 \theta - 3 \cos \theta \sin^2 \theta) + i(3 \cos^2 \theta \sin \theta - \sin^3 \theta).
\end{align*}
\]

The identities follow by equating real and imaginary parts.

2. Show that if \(f \) is entire, \(f(0) = 1 \), and \(f'(z) = 2f(z) \) for all \(z \in \mathbb{C} \), then \(f(z) = e^{2z} \) for all \(z \in \mathbb{C} \).

Solution. Suppose \(f \) is entire, \(f(0) = 1 \), and \(f'(z) = 2f(z) \) for all \(z \in \mathbb{C} \). Define a function by the formula

\[g(z) = \frac{f(z)}{e^{2z}}, \quad z \in \mathbb{C}. \]

Since \(e^{2z} \) is entire, \(e^{2z} \neq 0 \) for all \(z \in \mathbb{C} \), and \(f(z) \) is assumed to be entire, it follows
that g is entire. Also, since $f'(z) = 2f(z)$, we have by the quotient rule that,

$$g'(z) = \frac{d}{dz} \frac{f(z)}{e^{2z}}$$

$$= \frac{f'(z)e^{2z} - f(z)(2e^{2z})}{(e^{2z})^2}$$

$$= \frac{2f(z)e^{2z} - f(z)(2e^{2z})}{(e^{2z})^2}$$

$$= 0$$

for all $z \in \mathbb{C}$. Since g is entire and $g'(z) = 0$ for all $z \in \mathbb{C}$ it follows that there exists a constant c such that $g(z) = c$ for all $z \in \mathbb{C}$ (cf. Theorem pg. 73 in the text). But since $f(0) = 1$, so also $g(0) = 1$ so that necessarily, $c = 1$. Therefore,

$$\frac{f(z)}{e^{2z}} = g(z) = 1$$

for all $z \in \mathbb{C}$. I follows that $f(z) = e^{2z}$ for all $z \in \mathbb{C}$, as was to be proved.

3. Let $f(z)$ be defined by the formula

$$f(z) = e^{x^2-y^2} \cos(xy) + i \ e^{x^2-y^2} \sin(xy), \quad z = x + iy.$$

Show that f is entire and that $f'(z) = zf(z)$ for all z.

Solution 1. $f = u + iv$ where

$$u(x, y) = e^{x^2-y^2} \cos(xy) \quad \text{and} \quad v(x, y) = e^{x^2-y^2} \sin(xy).$$

Using the product rule we have that

$$u_x = x \ e^{x^2-y^2} \cos(xy) - y \ e^{x^2-y^2} \sin(xy),$$

$$u_y = -y \ e^{x^2-y^2} \cos(xy) - x \ e^{x^2-y^2} \sin(xy),$$

$$v_x = x \ e^{x^2-y^2} \sin(xy) + y \ e^{x^2-y^2} \cos(xy), \quad \text{and}$$

$$v_y = -y \ e^{x^2-y^2} \sin(xy) + x \ e^{x^2-y^2} \cos(xy).$$
Noting that the Cauchy-Riemann equations,

\[u_x = v_y \quad \text{and} \quad u_y = -v_x, \]

are satisfied, we conclude that \(f \) is entire (cf. Theorem pg. 66). Furthermore,

\[f'(z) = u_x + iv_x \]

\[= \left(x e^{\frac{x^2-y^2}{2}} \cos(xy) - y e^{\frac{x^2-y^2}{2}} \sin(xy) \right) + i \left(x e^{\frac{x^2-y^2}{2}} \sin(xy) + y e^{\frac{x^2-y^2}{2}} \cos(xy) \right) \]

\[= (x + iy) \left(e^{\frac{x^2-y^2}{2}} \cos(xy) + i e^{\frac{x^2-y^2}{2}} \sin(xy) \right) \]

\[= zf(z). \]

Solution 2. If \(w = u + iv \), then

\[e^w = e^u (\cos v + i \sin v). \]

Also, if \(z = x + iy \), then

\[\frac{1}{2} z^2 = \frac{x^2-y^2}{2} + ixy. \]

Hence,

\[e^{\frac{1}{2}z^2} = e^{\frac{x^2-y^2}{2}} \cos(xy) + i e^{\frac{x^2-y^2}{2}} \sin(xy), \]

i.e.,

\[f(z) = e^{\frac{1}{2}z^2}. \]

Since the composition of entire functions is entire, it follows immediately that \(f \) is entire. Also, the Chain Rule gives that

\[f'(z) = \frac{d}{dz} e^{\frac{1}{2}z^2} = ze^{\frac{1}{2}z^2} = zf(z). \]

4. Give the definitions of \(\sin z \) and \(\cos z \) and prove that

\[\sin^2 z + \cos^2 z = 1. \] (1)

Solution 1. \(\sin z \) and \(\cos z \) are defined for all \(z \in \mathbb{C} \) by the formulas

\[\sin z = \frac{e^{iz} - e^{-iz}}{2i} \quad \text{and} \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}. \]
Therefore,

\[\sin^2 z + \cos^2 z = \left(\frac{e^{iz} - e^{-iz}}{2i} \right)^2 + \left(\frac{e^{iz} + e^{-iz}}{2} \right)^2 \]

\[= \left(\frac{e^{2iz} - 2e^{iz}e^{-iz} + e^{-2iz}}{4} \right) + \left(\frac{e^{2iz} + 2e^{iz}e^{-iz} + e^{-2iz}}{4} \right) \]

\[= \left(\frac{-e^{2iz} + 2 - e^{-2iz}}{4} \right) + \left(\frac{e^{2iz} + 2 + e^{-2iz}}{4} \right) \]

\[= \frac{4}{4} = 1. \]

Solution 2. From their definitions, it is immediate that

\[\frac{d}{dz} \sin z = \cos z \quad \text{and} \quad \frac{d}{dz} \cos z = -\sin z. \]

Therefore, using the Chain Rule,

\[\frac{d}{dz} (\sin^2 z + \cos^2 z) = 2 \sin z \cos z + 2 \cos z (-\sin z) = 0 \]

for all \(z \in \mathbb{C} \). Consequently, by the theorem that asserts that an analytic function \(f \) defined on a domain \(D \) satisfying \(f'(z) = 0 \) for all \(z \in D \) must be constant (cf. Section 25 pg. 73), there exists a constant \(c \) such that

\[\sin^2 z + \cos^2 z = c \quad \text{for all} \quad z \in \mathbb{C}. \]

Letting \(z = 0 \) yields that \(c \) must be equal to 1, which proves (1).

5. Let \(C \) be the boundary of the circular sector, \(0 \leq r \leq 1, \pi/4 \leq \theta \leq \pi/2 \), the orientation of \(C \) being in the counterclockwise direction. Compute

\[\int_C |z|^2 \, dz. \]

Solution. We break \(C \) up into the following 3 smooth contours:

\[C_1 : \quad z(t) = te^{i\pi/4}, \quad 0 \leq t \leq 1; \]

\[C_2 : \quad z(\theta) = e^{i\theta}, \quad \pi/4 \leq \theta \leq \pi/2; \]

\[C_3 : \quad z(t) = (1-t)i, \quad 0 \leq t \leq 1. \]
We have that

\[
\int_{C_1} |z|^2 \, dz = \int_0^1 |te^{i\pi/4}|^2 e^{i\pi/4} \, dt
\]

\[= e^{i\pi/4} \int_0^1 t^2 \, dt \]

\[= \frac{1}{3} e^{i\pi/4}, \]

\[
\int_{C_2} |z|^2 \, dz = \int_{\pi/4}^{\pi/2} |e^{i\theta}|^2 i e^{i\theta} \, d\theta
\]

\[= \int_{\pi/4}^{\pi/2} i e^{i\theta} \, d\theta \]

\[= e^{i\theta}\bigg|_{\pi/4}^{\pi/2}
\]

\[= i - e^{i\pi/4}, \]

and

\[
\int_{C_3} |z|^2 \, dz = \int_0^1 |(1 - t)i|^2 (-i) \, dt
\]

\[= -i \int_0^1 (1 - t)^2 \, dt \]

\[= -\frac{1}{3} i. \]

Therefore,

\[
\int_{C} |z|^2 \, dz = \int_{C_1} |z|^2 \, dz + \int_{C_2} |z|^2 \, dz + \int_{C_3} |z|^2 \, dz
\]

\[= \frac{1}{3} e^{i\pi/4} + (i - e^{i\pi/4}) + -\frac{1}{3} i
\]

\[= \frac{2}{3} i - \frac{2}{3} e^{i\pi/4}. \]
Remark. Since $e^{i\pi/4} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$, the answer can also be expressed in the form $-\frac{\sqrt{2}}{3} + \frac{2-\sqrt{2}}{3}i$.

6. Let C be an arbitrary smooth contour parametrized by $z = z(t), a \leq t \leq b$. Show directly from the definition of contour integrals that

$$\int_C z \, dz = \frac{z(b)^2}{2} - \frac{z(a)^2}{2}$$

Solution.

$$\int_C z \, dz = \int_a^b z(t) \, z'(t) \, dt$$

$$= \int_a^b \frac{d}{dt} \frac{z(t)^2}{2} \, dt$$

$$= \frac{z(t)^2}{2} \bigg|_a^b$$

$$= \frac{z(b)^2}{2} - \frac{z(a)^2}{2}$$

7. Evaluate

$$\int_C \frac{\cos 3z}{z^2(z - \pi)} \, dz$$

for each of the following contours: (i) $|z| = 2$, (ii) $|z - 2| = 1$, (iii) $|z - 3| = 1$; here, each of these circles is oriented in the counterclockwise direction.

Solution

(i) Notice that 0 is inside C. Also, as π lies outside C, if we set

$$f(z) = \frac{\cos 3z}{z - \pi}$$

then f is analytic on and inside C. Therefore, by the Cauchy Integral Formula (with
\(n = 1 \),

\[
\int_C \frac{\cos 3z}{z^2(z - \pi)} \, dz = \int_C \frac{f(z)}{z^2} \, dz
\]

\[
= 2\pi i \left(\frac{1}{2\pi i} \int_C \frac{f(z)}{z^2} \, dz \right)
\]

\[
= 2\pi if'(0).
\]

But

\[
f'(z) = \frac{-3(z - \pi) \sin 3z - \cos 3z}{(z - \pi)^2},
\]

so that

\[
f'(0) = -\frac{1}{\pi^2}.
\]

Therefore,

\[
\int_C \frac{\cos 3z}{z^2(z - \pi)} \, dz = 2\pi i \left(-\frac{1}{\pi^2} \right) = -\frac{2i}{\pi}.
\]

(ii) Since the points 0 and \(\pi \) lie outside \(|z - 2| = 1 \),

\[
\frac{\cos 3z}{z^2(z - \pi)}
\]

is analytic on and inside \(C \). Therefore, by Cauchy’s Theorem,

\[
\int_C \frac{\cos 3z}{z^2(z - \pi)} \, dz = 0.
\]

(iii) Notice that \(\pi \) is inside \(C \). Also, as 0 lies outside \(C \), if we set

\[
g(z) = \frac{\cos 3z}{z^2}
\]

then \(g \) is analytic on and inside \(C \). Therefore, by the Cauchy Integral Formula (with
\[n = 0, \]
\[
\int_C \frac{\cos 3z}{z^2(z - \pi)} \, dz = \int_C \frac{g(z)}{z - \pi} \, dz
\]
\[
= 2\pi i \left(\frac{1}{2\pi i} \int_C \frac{g(z)}{z} \, dz \right)
\]
\[
= 2\pi i \ g(\pi)
\]
\[
= 2\pi i \left(-\frac{1}{\pi^2} \right)
\]
\[
= -\frac{2i}{\pi}.
\]

8. Let \(f \) be an entire function and assume that \(f \) is bounded away from 0, i.e., there exists an \(\epsilon > 0 \) such that \(|f(z)| \geq \epsilon \) for all \(z \in \mathbb{C} \). Show that \(f \) is constant.

Solution. Suppose that \(f \) is an entire function, \(\epsilon > 0 \), and \(|f(z)| \geq \epsilon \) for all \(z \in \mathbb{C} \). Since \(|f(z)| \geq \epsilon \) for all \(z \in \mathbb{C} \), in particular, \(f(z) \neq 0 \) for all \(z \in \mathbb{C} \). Therefore, if we define \(g \) by the formula

\[g(z) = \frac{1}{f(z)}, \quad z \in \mathbb{C}, \]

then \(g \) is entire. Furthermore, since \(|f(z)| \geq \epsilon \) for all \(z \in \mathbb{C} \),

\[|g(z)| = \frac{1}{|f(z)|} \leq \frac{1}{\epsilon} \]

for all \(z \in \mathbb{C} \), i.e., \(g \) is bounded. Since \(g \) is a bounded entire function, it follows from Liouville’s Theorem that \(g \) is constant. Since \(g \) is constant, \(f \) is constant.

9. Show that if \(C \) is the circle \(|z| = 3 \), parametrized counterclockwise, and \(t \) is a real number, then

\[\frac{1}{2\pi i} \int_C \frac{e^{tz}}{z^2 + 1} \, dz = \sin t. \]

Solution 1. The Method of Partial Fractions yields the identity

\[\frac{1}{z^2 + 1} = \frac{1}{2i} \left(\frac{1}{z - i} - \frac{1}{z + i} \right). \]

Therefore, if we let

\[f(z) = \frac{1}{2i} e^{tz}, \]

\[8 \]
then
\[\frac{e^{tz}}{z^2 + 1} = \frac{f(z)}{z - i} - \frac{f(z)}{z + i}. \]

Hence, by the Cauchy Integral Formula,
\[\frac{1}{2\pi i} \int_C \frac{e^{tz}}{z^2 + 1} \, dz = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - i} \, dz - \frac{1}{2\pi i} \int_C \frac{f(z)}{z + i} \, dz \]
\[= f(i) - f(-i) \]
\[= \frac{1}{2i} e^{it} - \frac{1}{2i} e^{-it} \]
\[= \sin t. \]

Solution 2. Let \(C^+ \) be the upper half of \(C \) parametrized by \(z(\theta) = 3e^{i\theta}, \ 0 \leq \theta \leq \pi \) and let \(C^- \) be the lower half of \(C \) parametrized by \(z(\theta) = 3e^{i\theta}, \ \pi \leq \theta \leq 2\pi \). Define two closed contours \(\Gamma^+ \) and \(\Gamma^- \) by letting
\[\Gamma^- = C^+ + [-3, 3] \quad \text{and} \quad \Gamma^- + [3, -3]. \]
Since \([3, -3] = -[-3, 3]\),
\[\frac{1}{2\pi i} \int_C \frac{e^{tz}}{z^2 + 1} \, dz = \frac{1}{2\pi i} \int_{\Gamma^+} \frac{e^{tz}}{z^2 + 1} \, dz + \frac{1}{2\pi i} \int_{\Gamma^-} \frac{e^{tz}}{z^2 + 1} \, dz. \]
But noting that
\[z^2 + 1 = (z - i)(z + i), \]
we see using the Cauchy Integral Formula that,
\[\frac{1}{2\pi i} \int_{\Gamma^+} \frac{e^{tz}}{z^2 + 1} \, dz = \frac{1}{2\pi i} \int_{\Gamma^+} \frac{e^{tz}}{z - i} \, dz = \frac{e^{it}}{2i} \]
and
\[\frac{1}{2\pi i} \int_{\Gamma^-} \frac{e^{tz}}{z^2 + 1} \, dz = \frac{1}{2\pi i} \int_{\Gamma^-} \frac{e^{tz}}{z + i} \, dz = -\frac{e^{-it}}{2i}. \]
Therefore,
\[\frac{1}{2\pi i} \int_C \frac{e^{tz}}{z^2 + 1} \, dz = \frac{e^{it}}{2i} - \frac{e^{-it}}{2i} = \sin t. \]

10. Let \(f \) be an entire function satisfying \(f'(0) = 1 \). Show that if \(|f(z)| \leq |z| \) for all \(z \in \mathbb{C} \), then \(f(z) = z \) for all \(z \in \mathbb{C} \).
Solution 1. Fix $z_0 \in \mathbb{C}$ and a positive real number R. If $z = z_0 + Re^{i\theta}$ is a point on the circle centered at z_0 of radius R, then

$$|f(z)| \leq |z| = |z_0 + Re^{i\theta}| \leq |z_0| + R.$$

Therefore, by Cauchy’s Estimate (with $n = 2$ and $M_R = |z_0| + R$),

$$|f''(z_0)| \leq \frac{2(|z_0| + R)}{R^2}.$$

Since R is an arbitrary positive real number in this inequality, by letting $R \to \infty$ we see that $f''(z_0) = 0$. Since z_0 is an arbitrary point in \mathbb{C} it follows that $f''(z) = 0$ for all $z \in \mathbb{C}$. Consequently, there exist constants a and b such that

$$f(z) = a + bz$$

for all $z \in \mathbb{C}$. Now, since we are assuming that $|f(z)| \leq |z|$ for all z in particular by letting $z = 0$, we see that $f(z) = 0$. Therefore, $a = 0$. Also, since we assume that $f'(0) = 1$, we have that $b = 1$. Consequently, $f(z) = z$ for all $z \in \mathbb{C}$.

Solution 2. This solution is very similar to Solution 1 and we merely sketch the details. Apply Cauchy’s estimate to f as in Solution 1, but with $n = 1$ to obtain that

$$|f'(z_0)| \leq \frac{(|z_0| + R)}{R}.$$

By letting $R \to \infty$ in this inequality we deduce that

$$|f'(z_0)| \leq 1.$$

Since this last inequality holds for all $z_0 \in \mathbb{C}$, it follows f' is bounded. But since f is entire, so also f' is entire (cf. Theorem 1 on pg. 168). Therefore, as f' is a bounded entire function, it follows by Liouville’s Theorem that f' is constant, say $f'(z) = b$ for all $z \in \mathbb{C}$. Since antiderivatives are unique up to a constant, it follows that f has the form $f(z) = a + bz$ just as in Solution 1.