1. Compute:

(i) \((1 - i)(2 - i)\)

(ii) \(\frac{1}{3 - 4i}\)

(iii) \((1 + i)^{15}\)

Solution.

(i)

\[
(1 - i)(2 - i) = 2 - 2i - i + i^2 \\
= 2 - 2i - i - 1 \\
= 1 - 3i.
\]

(ii)

\[
\frac{1}{3 - 4i} = \frac{1}{3 - 4i} \frac{3 + 4i}{3 + 4i} \\
= \frac{3 + 4i}{9 - (4i)^2} \\
= \frac{3 + 4i}{9 + 16} \\
= \frac{3}{25} + \frac{4}{25}i.
\]
(iii) $1 + i = \sqrt{2} e^{\frac{\pi i}{4}}$. Therefore,

$$(1 + i)^{15} = (\sqrt{2} e^{\frac{\pi i}{4}})^{15}$$

$$= (\sqrt{2})^{15} e^{\frac{15\pi i}{4}}$$

$$= 128\sqrt{2} \left(\cos\left(\frac{15\pi}{4}\right) + \sin\left(\frac{15\pi}{4}\right) i \right)$$

$$= 128\sqrt{2} \left(\cos\left(\frac{7\pi}{4}\right) + \sin\left(\frac{7\pi}{4}\right) i \right)$$

$$= 128\sqrt{2} \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i \right)$$

$$= 128 - 128i.$$

Alternately,

$$(1 + i)^2 = 1 + 2i + i^2 = 1 + 2i - 1 = 2i,$$

so that

$$(1 + i)^4 = ((1 + i)^2)^2 = (2i)^2 = -4.$$

Consequently,

$$(1 + i)^{15} = ((1 + i)^4)^3(1 + i)^2(1 + i)$$

$$= (-4)^3 (2i) (1 + i)$$

$$= -64 (-2 + 2i)$$

$$= 128 - 128i.$$

2. Find all solutions to the equation $z^4 = -1$.

Solution. If we let $z = re^{i\theta}$ and note that $-1 = e^{\pi i}$, the equation becomes

$$r^4 e^{4\theta i} = e^{\pi i}.$$

Consequently, $z = re^{i\theta}$ satisfies $z^4 = -1$ if and only if $r = 1$ and

$$4\theta i = \pi i + 2k\pi i$$
for some \(k \in \mathbb{Z} \). Therefore, the solutions to \(z^4 = -1 \) have the form
\[
z_k = e^{\frac{2k+1}{4} \pi i}, \quad k = 0, \pm 1, \pm 2, \ldots .
\]
But since \(z_{k+4} = z_k \), there are only 4 different such complex numbers, \(z_0, z_1, z_2, \) and \(z_3 \), or in rectangular coordinates,
\[
\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i, \quad -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i, \quad -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i, \quad \text{and} \quad \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i.
\]

3. (i) Let \(S \) be a set of complex numbers. Give the definition for a point \(z_0 \in \mathbb{C} \) to be an interior point of \(S \).

(ii) Prove that if \(D = \{ z \in \mathbb{C} : |z| < 1 \} \), then \(D \) is open (i.e., every point in \(D \) is an interior point of \(D \)).

Solution.

(i) \(z_0 \) is an interior point of \(S \) if there exists a neighborhood of \(z_0 \) that lies in \(S \), i.e., there exists \(\epsilon > 0 \) such that \(z \in S \) whenever \(|z - z_0| < \epsilon \).

(ii) Fix \(z_0 \in D \). We need to show that there exists \(\epsilon > 0 \) such that \(z \in D \) whenever \(|z - z_0| < \epsilon \). Since \(z_0 \in D \), by the definition of \(D \), \(|z_0| < 1 \). Therefore, if we let \(\epsilon = 1 - |z_0|, \epsilon > 0 \). Furthermore, if \(|z - z_0| < \epsilon \), then
\[
|z| = |z_0 + (z - z_0)| \\
\leq |z_0| + |z - z_0| \\
< |z_0| + \epsilon \\
= |z_0| + (1 - |z_0|) \\
= 1.
\]

Therefore, \(z \in D \) whenever \(|z - z_0| < \epsilon \).

4. Let \(D \) be the domain consisting of all \(z = re^{i\theta} \) where \(r > 0 \) and \(0 < \theta < 2\pi \) and define a complex valued function \(f \) on \(D \) by the formula
\[
f(z) = \sqrt{r} \ e^{i\theta}.
\]
Prove that f is a branch of \sqrt{z} on D, i.e., f is analytic on D and $f(z)^2 = z$ for all $z \in D$.

Solution. We have that $f = u + iv$ where

$$ u(r, \theta) = \sqrt{r} \cos(\frac{\theta}{2}) $$

and

$$ v(r, \theta) = \sqrt{r} \sin(\frac{\theta}{2}). $$

Observe that u and v are differentiable on D. Therefore, f will analytic on D if the Cauchy-Riemann equations hold on D (cf. Theorem on pg. 69 of the text). To verify that u and v satisfy the Cauchy-Riemann equation hold, we work in polar coordinates (cf. Equation (6) pg. 69). We have that

$$ u_r = \frac{1}{2 \sqrt{r}} \cos(\frac{\theta}{2}) $$

$$ u_\theta = -\frac{\sqrt{r}}{2} \sin(\frac{\theta}{2}), $$

$$ v_r = \frac{1}{2 \sqrt{r}} \sin(\frac{\theta}{2}), $$

and

$$ v_\theta = \frac{\sqrt{r}}{2} \cos(\frac{\theta}{2}). $$

Therefore,

$$ ru_r = r \left(\frac{1}{2 \sqrt{r}} \cos(\frac{\theta}{2}) \right) = \frac{\sqrt{r}}{2} \cos(\frac{\theta}{2}) = v_\theta $$

and

$$ rv_r = r \left(\frac{1}{2 \sqrt{r}} \sin(\frac{\theta}{2}) \right) = \frac{\sqrt{r}}{2} \sin(\frac{\theta}{2}) = -u_\theta, $$

i.e., the Cauchy-Riemann equations hold. This establishes that f is analytic on D.
To see that $f(z)^2 = z$ for all $z \in D$, fix $z = re^{i\theta} \in D$. Then

$$f(z)^2 = \left(\sqrt{r} e^{i\frac{\theta}{2}}\right)^2 = \left(\sqrt{r}\right)^2 (e^{i\frac{\theta}{2}})^2 = re^{i\theta} = z.$$

5. Prove that if f is entire, $f(0) = 1$, and $f'(z) = 2f(z)$ for all $z \in \mathbb{C}$, then $f(z) = e^{2z}$ for all $z \in \mathbb{C}$.

Solution. We employ the trick that was used in class to show that $f(z) = e^z$ is the unique entire function satisfying $f(0) = 1$ and $f'(z) = f(z)$ for all $z \in \mathbb{C}$.

Suppose f is an entire function, $f(0) = 1$, and $f'(z) = 2f(z)$ for all $z \in \mathbb{C}$. Define a function g on \mathbb{C} by the formula

$$g(z) = \frac{f(z)}{e^{2z}}, \quad z \in \mathbb{C}.$$

Since $f(z)$ and e^{2z} are both entire functions, and $e^{2z} \neq 0$ for all $z \in \mathbb{C}$, $g(z)$ is an entire function. Furthermore,

$$g'(z) = \frac{d}{dz} \frac{f(z)}{e^{2z}} = \frac{f'(z)e^{2z} - f(z)2e^{2z}}{(e^{2z})^2}$$

$$= \frac{2f(z) e^{2z} - f(z)2e^{2z}}{e^{4z}} = 0$$

for all $z \in \mathbb{C}$. Consequently, since \mathbb{C} is a domain, it follows that g is constant (cf. Theorem on page 73). But if $c \in \mathbb{C}$ and $g(z) = c$ for all $z \in \mathbb{C}$, then

$$f(z) = ce^{2z}$$

for all $z \in \mathbb{C}$. In particular, by letting $z = 0$, we find that

$$1 = f(0) = ce^0 = c.$$

Hence, $f(z) = e^{2z}$ for all $z \in \mathbb{C}$, as was to be proved.