Suppose that a continuous function \(f : [a, b] \to \mathbb{R} \) has the property that \(\int_c^d f \leq 0 \) whenever \(a \leq c < d \leq b \). Prove that \(f(x) \leq 0 \) for all \(x \in [a, b] \) in the following two ways.

(i) Using the Basic Fact about Continuous Functions from the Practice Quiz.

(ii) Using the Mean Value Theorem.

Proof using the Basic Fact. We argue by contradiction. Accordingly, assume that there exists a point \(x_0 \in [a, b] \) such that \(f(x_0) > 0 \). By the basic fact there exist \(\rho > 0 \) and \(c, d \in [a, b] \) with \(c < d \) and \(f(x) \geq \rho \) for all \(x \in [c, d] \). But then

\[
\int_c^d f \geq \int_c^d \rho = \rho(d - c) > 0,
\]

contradicting the assumption that \(\int_c^d f \leq 0 \) whenever \(a \leq c < d \leq b \).

Proof using the Mean Value Theorem. Suppose that a continuous function \(f : [a, b] \to \mathbb{R} \) has the property that \(\int_c^d f \leq 0 \) whenever \(a \leq c < d \leq b \). Fix a point \(x \in [a, b] \). Construct a pair of sequences \(\{c_n\} \) and \(\{d_n\} \) with the following properties

\[
\begin{align*}
& a \leq c_n < d_n \leq b \quad \text{for all } n \\
& x \in [c_n, d_n] \quad \text{for all } n \\
& \lim_{n \to \infty} (d_n - c_n) = 0
\end{align*}
\]

By the assumption that \(\int_c^d f \leq 0 \) whenever \(a \leq c < d \leq b \), we have from (??) that

\[
\int_{c_n}^{d_n} f \leq 0 \quad \text{for all } n.
\]

For each fixed \(n \) apply the Mean Value Theorem to the integral in (4) to obtain a point \(x_n \in [c_n, d_n] \) such that

\[
f(x_n) = \frac{1}{d_n - c_n} \int_{c_n}^{d_n} f \leq 0.
\]

Since \(x_n \in [c_n, d_n] \) for all \(n \) it follows from (2) and (3) that \(x_n \to x \). Therefore, since \(f \) is assumed to be continuous, we have that \(f(x_n) \to f(x) \) as \(n \to \infty \). Since \(f(x_n) \leq 0 \) for each \(n \), it follows that \(f(x) \leq 0 \).