1. Let \(\{p_n\} \) be a sequence of polynomials such that \(p_n \) converges uniformly to a function \(\phi \) on \(C = \{ \lambda \in \mathbb{C} \mid |\lambda| = 1 \} \). Prove that there exists \(f \in H(\mathbb{D}) \) such that \(p_n \to f \) in \(H(\mathbb{D}) \).

Solution. Since \(p_n \to \phi \) uniformly on \(C \), the sequence \(\{p_n\} \) is Cauchy in \(C(C, \mathbb{C}) \), the space of continuous functions on \(C \).

We claim that \(\{p_n\} \) is also Cauchy in \(H(\mathbb{D}) \). Fix \(\epsilon > 0 \) and a compact subset \(K \) of \(\mathbb{D} \). Choose \(N \) such that if \(m,n > N \),

\[
\max_{\lambda \in C} |p_n(\lambda) - p_m(\lambda)| < \epsilon.
\]

By the maximum principle, it follows that if \(m,n > N \), then

\[
\max_{z \in K} |p_n(z) - p_m(z)| < \epsilon.
\]

This proves that \(\{p_n\} \) is Cauchy in \(H(\mathbb{D}) \).

Since \(H(\mathbb{D}) \) is complete, there exists an \(f \in H(\mathbb{D}) \) such that \(p_n \to f \) in \(H(\mathbb{D}) \).

2. Let \(G \) be a simply connected region in the plane and assume that \(f \) is a conformal map from \(G \) to \(\mathbb{D} \) (i.e., \(f : G \to \mathbb{D} \) is an analytic bijection). Prove that if \(g \) is any other conformal map from \(G \) to \(\mathbb{D} \) then there exist \(c, \alpha \in \mathbb{C} \) with \(|c| = 1 \) and \(\alpha \in \mathbb{D} \) such that \(g(z) = c\phi_\alpha(f(z)) \).

Solution. A basic fact in the text (Theorem 2.5 pg. 132) was that \(h : \mathbb{D} \to \mathbb{D} \) is a conformal map from the disc to the disc if and only if there exist \(c, \alpha \in \mathbb{C} \) with \(|c| = 1 \) and \(\alpha \in \mathbb{D} \) such that \(h(w) = c\phi_\alpha(w) \) for all \(w \in \mathbb{D} \). Here, \(\phi_\alpha \) is defined by

\[
\phi_\alpha(w) = \frac{w - \alpha}{1 - \bar{\alpha}w}.
\]

As a consequence, if \(f \) and \(g \) are two conformal maps from \(G \) to \(\mathbb{D} \), then, as \(g \circ f^{-1} \) is a conformal map from \(\mathbb{D} \) to \(\mathbb{D} \), there exist \(c, \alpha \in \mathbb{C} \) with \(|c| = 1 \) and \(\alpha \in \mathbb{D} \) such that \(g \circ f^{-1}(w) = c\phi_\alpha(w) \) for all \(w \in \mathbb{D} \). The desired result follows by letting \(w = f(z) \).

3. Suppose that \(f \) is analytic on \(\mathbb{D} \) with \(|f(z)| \leq 1 \) for all \(z \in \mathbb{D} \). If \(f = 0 \) at the distinct
points $a_1, \ldots, a_n \in \mathbb{D}$, prove the inequality,

$$|f(z)| \leq \prod_{j=1}^{n} \left| \frac{z - a_j}{1 - \overline{a_j}z} \right|,$$

for all $z \in \mathbb{D}$. If f has a double 0 at a_j for some j, prove that the inequality is strict for all $z \in \mathbb{D}$.

Solution. Let

$$\Pi(z) = \prod_{j=1}^{n} \frac{z - a_j}{1 - \overline{a_j}z},$$

and define a function g by the formula,

$$g(z) = \frac{f(z)}{\Pi(z)}.$$

The denominator in the expression defining g has simple zeros at each a_j, but, as $f(a_j) = 0$ for $j = 1, \ldots, n$, these singularities of g are removable.

Noting that, if ϕ_α is defined by (1), then ϕ_α has the properties

$$\phi_\alpha$$

is analytic in a neighborhood of \mathbb{D}^-, and

$$|\phi_\alpha(w)| = 1$$

whenever $|w| = 1$,

it follows that

$$\Pi = \prod_{j=1}^{n} \phi_{a_j}$$

is analytic on a neighborhood of \mathbb{D}^- and $|\Pi(z)| = 1$ whenever $|z| = 1$. In particular, we have that

$$\lim_{r \to 1^{-}} |\Pi(z)| = 1.$$

Hence, by the maximum modulus principle,

$$\sup_{\mathbb{D}} |g(z)| = \lim_{r \to 1^{-}} \sup_{|z| = r} \left| \frac{f(z)}{\Pi(z)} \right| \leq \lim_{r \to 1^{-}} \sup_{|z| = r} \left| \frac{f(z)}{\Pi(z)} \right| = \lim_{r \to 1^{-}} \sup_{|z| = r} |f(z)| \leq 1.$$

Equivalently, if $z \in \mathbb{D}$,

$$|f(z)| \leq \prod_{j=1}^{n} \left| \frac{z - a_j}{1 - \overline{a_j}z} \right|,$$

as was to be shown.

If f has a double zero at some a_j, g is nonconstant, and the maximum principle implies that $|g(z)| < 1$ for all $z \in \mathbb{D}$. Thus,

$$|f(z)| < \prod_{j=1}^{n} \left| \frac{z - a_j}{1 - \overline{a_j}z} \right|,$$

for all $z \in \mathbb{D}$.
4. Let G be an open set in \mathbb{C} and let $F \subseteq H(G)$. Prove that if F is locally bounded, then F is locally Lipschitz, i.e., for each $a \in G$ there exist $r > 0$ and a constant M such that $B(a;r) \subseteq G$ and $|f(z) - f(w)| \leq M|z - w|$ for all $z, w \in B(a;r)$.

Solution. Fix $a \in G$. Since F is assumed locally bounded, there exists $r > 0$ and a constant M such that $B(0;r) - \subseteq G$ and for all $f \in F$.

We claim that F is uniformly Lipschitz on $B(a;r/2)$. To see this fix $z, w \in B(a;r/2)$ and let $\gamma(t) = a + re^{it}$, $0 \leq t \leq 2\pi$. Then by the Cauchy Integral Formula, for each $f \in F$,

$$|f(z) - f(w)| = \left| \frac{1}{2\pi i} \int_{\gamma} \frac{f(\lambda)}{\lambda - z} \, d\lambda - \frac{1}{2\pi i} \int_{\gamma} \frac{f(\lambda)}{\lambda - w} \, d\lambda \right|$$

$$= \frac{1}{2\pi} \left| \int_{\gamma} \frac{(z - w)f(\lambda)}{(\lambda - z)(\lambda - w)} \, d\lambda \right|$$

$$\leq \frac{|z - w|}{2\pi} \max_{\lambda \in \gamma} \left| \frac{f(\lambda)}{(\lambda - z)(\lambda - w)} \right| \|\gamma\|$$

$$= \frac{|z - w|}{2\pi} \frac{M}{r(r/2)(r/2)} \frac{2\pi r}{r}$$

$$= \frac{4M}{r} |z - w|.$$

This proves that F is uniformly Lipschitz on $B(a;r/2)$ - as was claimed.

5. Let F be the collection of analytic functions on \mathbb{D} whose power series expansion, $\sum_{n=0}^{\infty} a_n z^n$, satisfies $|a_n| \leq n$ for all $n \geq 0$. Prove that F is a normal family.

Solution. By Montel’s theorem it is sufficient to show that F is locally bounded. Fix K compact in \mathbb{D}. Define $r = \sup_K |z| < 1$. Note that, if $f \in F$ and $z \in K$, then

$$|f(z)| = \left| \sum_{n=0}^{\infty} a_n z^n \right| \leq \sum_{n=0}^{\infty} |a_n| |z|^n \leq \sum_{n=0}^{\infty} nr^n = \frac{r}{(1 - r)^2}$$

Thus, F is locally bounded.

6. Evaluate

$$\prod_{n=2}^{\infty} (1 - \frac{1}{n^2})$$

in the following two ways: (i) directly, and (ii) from the Weierstrass factorization of the sin function.

Solution.
(i) Note that
\[
\left(1 - \frac{1}{n^2}\right) = \left(\frac{n^2 - 1}{n^2}\right) = \left(\frac{(n - 1)(n + 1)}{n^2}\right).
\]
Hence,
\[
\prod_{n=2}^{N} \left(1 - \frac{1}{n^2}\right) = \frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{2 \cdot 4}{3 \cdot 3} \cdot \frac{3 \cdot 6}{4 \cdot 4} \cdots \frac{(N - 1) \cdot (N + 1)}{N \cdot N} = \frac{N + 1}{2N}.
\]
Therefore,
\[
\lim_{n \to \infty} \prod_{n=2}^{N} \left(1 - \frac{1}{n^2}\right) = \lim_{N \to \infty} \frac{N + 1}{2N} = \frac{1}{2}.
\]

(ii) Using the factorization of the sine function,
\[
\sin(\pi z) = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right), \quad z \in \mathbb{C},
\]
we have that
\[
\frac{\sin(\pi z)}{\pi z(1 - z^2)} = \prod_{n=2}^{\infty} \left(1 - \frac{z^2}{n^2}\right), \quad z \in \mathbb{C} \setminus \{-1, 0, 1\}.
\]
The left hand side of this equation has a singularity at 1, but it is removable. Also, the right hand side is entire. Thus,
\[
\prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2}\right) = \lim_{z \to 1} \prod_{n=2}^{\infty} \left(1 - \frac{z^2}{n^2}\right)
\]
\[
= \lim_{z \to 1} \frac{\sin(\pi z)}{\pi z(1 - z^2)}
\]
\[
= \lim_{z \to 1} \frac{-1}{\pi z(1 + z)} \frac{\sin(\pi z)}{z - 1}
\]
\[
= -\frac{1}{2\pi} \lim_{z \to 1} \frac{\sin(\pi z)}{z - 1}
\]
\[
= -\frac{1}{2\pi} \left(\sin(\pi z)\right)'(1)
\]
\[
= -\frac{1}{2\pi} (-\pi)
\]
\[
= \frac{1}{2}.
\]

7. Let G be a connected open set and let $\{f_n\}$ be a sequence in $H(G)$. Assume that $\prod_{n=1}^{\infty} f_n$ converges in $H(G)$ to a function f which is not identically 0. Show that for $a \in G$, $f(a) = 0$ if and only if there exists an n such that $f_n(a) = 0$.
Solution. First suppose that \(f_n(a) = 0 \) for some \(n \). Then if \(N \geq n \), \(\prod_{m=1}^{N} f_m(a) = 0 \). Thus,

\[
f(a) = \prod_{n=1}^{\infty} f_n(a) = \lim_{N \to \infty} \prod_{n=1}^{N} f_n(a) = 0.
\]

Now suppose \(f(a) = 0 \). Since \(f \) is not identically 0, the zeros of \(f \) are isolated. Choose \(r > 0 \) such that \(f \) has no zeros in \(B(a; r) \setminus \{ a \} \). By Hurwitz’s Theorem, there is an \(N \) such that \(\prod_{N} f_n \) has a zero at some point \(w \in B(a; r) \). Thus, for some \(n \leq N \), \(f_n \) has a zero at \(w \). But then, by the result in the previous paragraph, \(f(w) = 0 \). Since \(f \) has no zeros in \(B(a; r) \setminus \{ a \} \), \(w = a \) and \(f_n(a) = 0 \).

8. Prove that for each \(\epsilon > 0 \), \(\frac{1}{z+i} + \sin z \) has infinitely many zeros in the region \(\{ z = x + iy \mid x > 0, |y| < \epsilon \} \).

Solution 1. Let \(\epsilon > 0 \) where without loss of generality we assume that \(\sinh \epsilon \leq 1 \). Observe that for \(z = x + iy \),

\[
\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}) = \frac{1}{2i} (e^{ix-y} - e^{-ix+y}) = \frac{1}{2i} ((\cos x + i \sin x)e^{-y} - (\cos x - i \sin x)e^{y}) = \frac{1}{2i} (\cos x (e^{-y} - e^{y}) + i \sin x (e^{-y} + e^{y}) = \sin x \cosh y + i \cos x \sinh y.
\]

Hence,

\[
|\sin z|^2 = \sin^2 x \cosh^2 y + \cos^2 x \sinh^2 y. \tag{2}
\]

For \(m, n \) positive integers with \(m < n \) define a closed contour \(C_{m,n} \) by

\[
C_{m,n} = [2m\pi + \frac{\pi}{2} + \epsilon i, 2m\pi + \frac{\pi}{2} - \epsilon i] + [2m\pi + \frac{\pi}{2} - \epsilon i, 2m\pi + \frac{\pi}{2} + \epsilon i] + [2n\pi + \frac{\pi}{2} + \epsilon i, 2m\pi + \frac{\pi}{2} + \epsilon i] + [2n\pi + \frac{\pi}{2} + \epsilon i, 2m\pi + \frac{\pi}{2} + \epsilon i]
\]

Noting that \(\cosh^2 y \geq 1 \) for all \(y \) and \(\sin x = 1 \) on the vertical sides of \(C_{m,n} \), we see using (2) that

\[
|\sin z| \geq 1 \geq \sinh \epsilon
\]
on the vertical sides of \(C_{m,n} \). On the other hand on the horizontal sides of \(C_{m,n} \), (2) implies that

\[
|\sin z|^2 = \sin^2 x \cosh^2 y + \cos^2 x \sinh^2 y \geq \sin^2 x + \cos^2 x \sinh^2 \epsilon
\]

5
\[
\geq \sin^2 x \sinh^2 \epsilon + \cos^2 x \sinh^2 \epsilon \\
= \sinh^2 \epsilon.
\]

Therefore, for all choices of positive integers \(m < n \),
\[
|\sin z| \geq \sinh \epsilon \quad \text{for all } z \in C_{m,n}. \tag{3}
\]

Now, since
\[
\max_{z \in C_{m,n}} \left| \frac{1}{z+i} \right| = \frac{1}{m+1} \to 0 \quad \text{as } m \to \infty,
\]
it follows that we may choose \(m \) such that
\[
\max_{z \in C_{m,n}} \left| \frac{1}{z+i} \right| < \sinh \epsilon \quad \text{for all } n > m.
\]

For this choice of \(m \), (3) implies that if \(n > m \)
\[
|\left(\frac{1}{z+i} + \sin z \right) - \sin z| = \left| \frac{1}{z+1} \right| < \sinh \epsilon \leq |\sin z|
\]
for all \(z \in C_{m,n} \). Hence, by Rouche’s Theorem, \(\frac{1}{z+i} + \sin z \) and \(\sin z \) have the same number of 0’s inside \(C_{m,n} \). Since \(\sin z \) has \(n - m \) 0’s inside \(C_{m,n} \) and \(n > m \) is arbitrary it follows that \(\frac{1}{z+i} + \sin z \) has infinitely many zeros in the region \(\{ z = x + iy \mid x > 0, |y| < \epsilon \} \).

Solution 2. Fix \(\epsilon > 0 \) and for \(n \geq 0 \), define
\[
G_n = \{ z = x + iy \mid 2\pi n < x < 2\pi(n+1), |y| < \epsilon \}, \quad f_n(z) = \frac{1}{z+2\pi n + i} + \sin z, \quad z \in \mathbb{C} \setminus \{-2\pi n - i\}.
\]
Noting that \(\sin(z + 2\pi n) = \sin z, \quad z \in \mathbb{C} \), it follows that
\[
f_n(z) = f_0(z + 2\pi n), \quad z \in G_0.
\]

Therefore,
\[
f_0 \text{ has a 0 in } G_n \iff f_n \text{ has a 0 in } G_0. \tag{4}
\]

Now, clearly, as \((z + 2\pi n)^{-1} \to 0 \) uniformly on \(G_0 \), \(f_n \to \sin z \) uniformly on \(z \). Therefore, as \(\sin z \) has a 0 at \(\pi \in G_0 \), Hurwicz’s Theorem implies that there exists \(N \) such that
\[
n \geq N \implies f_n \text{ has a 0 in } G_0.
\]

Thus, using (4),
\[
n \geq N \implies f_0 \text{ has a 0 in } G_n.
\]

Since the sets \(G_n \) are pairwise disjoint subsets of \(G = \{ z = x + iy \mid x > 0, |y| < \epsilon \} \), this implies that \(f_0 \) has infinitely many 0’s in \(G \), as was to be proved.

1 Curtesy of Jiaxi Nie.
Solution 3.2 Fix $\epsilon > 0$ and define functions f and g by
\[f(z) = \sin z + \frac{1}{z + i} \quad \text{and} \quad g(z) = \sin z. \]
Choose δ satisfying $0 < \delta < \min\{\epsilon, \pi/2\}$ and for each $n \geq 1$ define a contour γ_n by
\[\gamma_n(t) = n\pi + \delta e^{it}, \quad 0 \leq t \leq 2\pi. \]
If we let
\[\mu = \min_{w \in \gamma_1} |\sin w|, \]
then $\mu > 0$. Also, as $g(z + n\pi) = (-1)^n g(z)$,
\[\forall_n \min_{w \in \gamma_n} |g(w)| = \mu. \]
On the other hand, if we let
\[\epsilon_n = \max_{w \in \gamma_n} |f(w) - g(w)|, \]
then, $\epsilon_n \to 0$. Therefore, as $\mu > 0$, there exists N such that
\[n \geq N \implies \epsilon_n < \mu. \quad (5) \]
We claim that f has exactly one 0 inside γ_n for every $n \geq N$. To prove this claim fix $n \geq N$ and observe that if $z \in \gamma_n$, then (5) implies that
\[|f(z) - g(z)| \leq \max_{w \in \gamma_n} |f(w) - g(w)| = \epsilon_n < \mu = \min_{w \in \gamma_n} |g(w)| \leq |g(z)|. \]
Therefore, since g has exactly one 0 inside γ_n, Rouche’s Theorem implies that f has exactly one 0 inside γ_n.

Finally, as f has a 0 inside γ_n for every $n \geq N$, the contours γ_n are pairwise disjoint and lie in $\{z = x + iy \mid x > 0, |y| < \epsilon\}$, it follows that f has infinitely many 0’s in $\{z = x + iy \mid x > 0, |y| < \epsilon\}$.

\[\text{Curtesy of Sung Min Lee (John).} \]