1. Let \(\{p_n\} \) be a sequence of polynomials such that \(p_n \) converges uniformly to a function \(\phi \) on \(\mathbb{C} = \{ \lambda \in \mathbb{C} | |\lambda| = 1 \} \). Prove that there exists \(f \in H(\overline{D}) \) such that \(p_n \to f \) in \(H(D) \).

2. Let \(G \) be a simply connected region in the plane and assume that \(f \) is a conformal map from \(G \) to \(\overline{D} \) (i.e., \(f : G \to \overline{D} \) is an analytic bijection). Prove that if \(g \) is any other conformal map from \(G \) to \(\overline{D} \) then there exist \(c, \alpha \in \mathbb{C} \) with \(|c| = 1 \) and \(\alpha \in \overline{D} \) such that \(g(z) = c\phi(\alpha f(z)) \).

3. Suppose that \(f \) is analytic on \(\overline{D} \) with \(|f(z)| \leq 1 \) for all \(z \in \mathbb{D} \). If \(f = 0 \) at the distinct points \(a_1, \ldots, a_n \in \mathbb{D} \), prove the inequality,
\[
|f(z)| \leq \prod_{j=1}^{n} \left| \frac{z - a_j}{1 - \overline{a_j}z} \right|
\]
for all \(z \in \mathbb{D} \). If \(f \) has a double 0 at \(a_j \) for some \(j \), prove that the inequality is strict for all \(z \in \mathbb{D} \).

4. Let \(G \) be an open set in \(\mathbb{C} \) and let \(\mathcal{F} \subseteq H(G) \). Prove that if \(\mathcal{F} \) is locally bounded, then \(\mathcal{F} \) is locally Lipschitz, i.e., for each \(a \in G \) there exist \(r > 0 \) and a constant \(M \) such that \(B(a;r) \subseteq G \) and \(|f(z) - f(w)| \leq M|z - w| \) for all \(z, w \in B(a;r) \).

5. Let \(\mathcal{F} \) be the collection of analytic functions on \(\mathbb{D} \) whose power series expansion, \(\sum_{n=0}^{\infty} a_n z^n \), satisfies \(|a_n| \leq n \) for all \(n \geq 0 \). Prove that \(\mathcal{F} \) is a normal family.

6. Evaluate
\[
\prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2} \right)
\]
in the following two ways: (i) directly, and (ii) from the Weierstrass factorization of the sin function.

7. Let \(G \) be a connected open set and let \(\{f_n\} \) be a sequence in \(H(G) \). Assume that \(\prod_{n=1}^{\infty} f_n \) converges in \(H(G) \) to a function \(f \) which is not identically 0. Show that for \(a \in G \), \(f(a) = 0 \) if and only if there exists an \(n \) such that \(f_n(a) = 0 \).

8. Prove that for each \(\epsilon > 0 \), \(\frac{1}{z+i} + \sin z \) has infinitely many zeros in the region \(\{ z = x + iy | x > 0, |y| < \epsilon \} \).