Instructions: Do all 5 problems in Part I. Solve 3 problems from Part II. Be sure to indicate the problem from Part II you do not want graded.

Part I.

1. Show that the equation $e^z = 2z + 1$ has exactly one solution in \mathbb{D}.

2. Let G be a connected open set in \mathbb{C}, f a nonconstant analytic function on G, and $a \in G$. For $0 \leq r < \text{dist}(a, \mathbb{C} \setminus G)$, define $M(r)$ by

 $$M(r) = \max_{0 \leq \theta < 2\pi} |f(a + re^{i\theta})|.$$

 Prove that M is a strictly increasing function. Is this result still true if G is open but not connected?

3. Prove that if $f : \mathbb{D} \to \mathbb{D}$ is analytic, and $f(z)$ is not identically equal to z, then f can have at most one fixed point in \mathbb{D}.

4. Let \mathcal{F} consist of the analytic functions on \mathbb{D} satisfying $f(1/3) = 0$ and $|f(z)| < 1$ for all $z \in \mathbb{D}$. Show that \mathcal{F} is a compact subset of $H(\mathbb{D})$ and give a brief explanation how this implies that the two suprema,

 $$M_1 = \sup_{f \in \mathcal{F}} |f(\frac{2}{3})| \text{ and } M_2 = \sup_{f \in \mathcal{F}} |f'(\frac{1}{3})|,$$

 are attained.

5. Show that the series that defines the Riemann ζ function converges uniformly on compact subsets of $\text{Re} \ z > 1$.
Part II.

1. Let A denote the collection of continuous complex valued functions on \mathbb{D}^- that are analytic on \mathbb{D}. Without using Runge’s Theorem, prove that $f \in A$ if and only if there exists a sequence of polynomials p_n such that p_n converges uniformly to f on \mathbb{D}^-.

2. Compute the M_1 and M_2 that are defined in problem 4 from Part I above.

3. Let $f : \mathbb{D} \to \mathbb{D}$ be an analytic function satisfying $f(0) = 0$. Prove that

$$|f(z) + f(-z)| \leq 2|z|^2$$

for all $z \in \mathbb{D}$. Further, show that this inequality is strict for all $z \in \mathbb{D} \setminus \{0\}$ unless $f(z) + f(-z) = 2cz^2$ for some $c \in \mathbb{C}$ with $|c| = 1$.

4. Let G be an open set in \mathbb{C}. Show that there exists $f \in H(G)$ such that for each $a \in G$, the power series representation for f at a has radius of convergence $R = \text{dist}(a, \partial G)$.